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Equilibrium Asset Pricing: U.S. Equities

U.S. Stocks
I Fama-French style factor models explain cross-sectional variation in

mean returns
I Slow moving dividend yields and consumption yields (cay) predict

time-series returns

Legacy modeling frictions

Common sources of time-series predictability should be linked to
common sources of risk

Kiefer Expected Returns 2 / 37



Risk Price Dynamics Should Predict Returns

Target:

Time-varying cross-sectional risk premiums predict time-series returns
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Tool: Markov Dynamics and Decomposition

Returns Rt+1 = r(xt+1) are functionals of a Markov state xt+1

Markov transition kernel (M)i ,j := Pr(x[ j ]|x[ i ]) > 0

Indexed states are w.l.o.g. [i ]- indicators x[i ] 7→ {0, 1}
Rows sum to one 1|X |×1 =: 1 =M1

If, in addition, we can find µ0 =M′µ0 such that µ′01 = 1,

M = 1µ′0 +Mγ

E[Rt+1|xt ] = (Mr)′xt

= (1µ′0r)′xt + (Mγr)′xt
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Long Run Mean Index Returns

Return on total wealth, large time limit

lim
k→∞

Et [Rt+k ] = lim
k→∞

(r · M′kxt)

= r · µ01′xt + lim
k→∞

(r ·
(
M′γ

)k
xt)

= r · µ0

r · µ0 measures the long run mean return for bearing aggregate risk
(Hansen and Scheinkman (2009), Alvarez and Jermann (2005))

Washes out predictable variation in expected returns (by construction)
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Transitory Component of Returns

Predictable component of k- period returns driven by Mγ ,

Et [Rt+k ]− r · µ0 = r ·
(
M′γ

)k
xt

Expected return factors

Et [Rt+k ] = r · µ0︸ ︷︷ ︸
permanent

+ r ·
(
M′γ

)k
xt︸ ︷︷ ︸

transitory
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Persistence is a Feature of Trailing Components

Estimated autoregressions for j ′th component yj , j = 1, 2

yt,j = φ0,j + φ1,jyt−1,j + ut,j

coefficient estimate s.e t− stat H0 : φ̂i ,j = 0

φ̂0,1 0.312 0.624 0.500

φ̂1,1 0.089 0.072 1.238

φ̂0,2 -0.059 0.032 -1.836

Mγ φ̂1,2 0.649 0.055 11.841

(a) The first component is not predictable. The second component is significantly
positively autoregressive. Fama and French factor return data are quarterly from Q1
1967 to Q3 2015.
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Local Variation in Mean Returns

Risk premiums vary through time

Forecasts vary through time (each sufficient for the other)

Et [Rt+k ]− Et−1[Rt−1+k ] =
(
M′
)k

∆xt−1

= µ01′∆xt−1 +
(
M′γ

)k
∆xt−1

=
(
M′γ

)k
∆xt−1

=: ∆Êt−1,k

∆Êt−1,k always means “changes in conditioning variable for a fixed
transition model”
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Local Variation in Mean Returns

• Models also vary through time

Et [Rt+k ]− Et−1[Rt−1+k ] = ∆[
(
M′
)k

xt−1]

= ∆
(
M′γ

)k
xt−1 +

(
M′γ

)k
∆xt−1

= ∆
(
M′γ

)k
xt−1 + ∆Êt−1,k

• ∆
(
M′γ

)k
captures “changes in transition model for given

conditioning variable”
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Ingredients

Risk premium dynamics, using ∆xt+1 = 0

Et [Rt+k ]− Et−1[Rt−1+k ] = ∆
(
M′γ

)k
xt−1

Dynamics are o - distance to Gaussian (Dyson)

∆
(
M′γ

)k
= −(1− λ2)−kγγ′ + o

(
1

KL(P ‖ Φ)

)
Time-varying mean returns

Et [Rt+k ]−Et−1[Rt−1+k ] = −ζt−kγγ′xt−1

ζt is the (log) spectral gap of the Markov generator
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Identification from Realized Returns

Principal components of realized returns covariance matrix

V(R) = VΛPCAV′

Weak spectral decomposition of Markov return covariance matrix

V(R) = UD1−λU′Σ

(D1−λ)i ,j =

{
(1− λj)−1 i = j

0 i 6= j
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Identification from Realized Returns

Cholesky decomposition CC ′ = Σ

Identify the spectral gap up to unitary maps U−1 = U ′,V−1 = V ′

‖ VΛ
1/2
PCA ‖= 〈UD1−λC ,UC 〉

If I = (CC ′)−1Σ, with some work we have pointwise identification

ζ−1 = (D1−λ)2,2 = (ΛPCA)2,2
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Figure: Spectral and Cumulative Gaps: Volatility
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(a) The spectral gap measures the difference in terms of volatility of quarterly returns
between the leading component and the first trailing component. The cumulative gap
measures the difference between the leading component and the sum of all trailing
components. Data are quarterly from 1967 Q1 to 2016 Q4. Fama-French and Carhart
factor returns from Ken French. NBER recessions are in blue.
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Forecasting Mean Returns

Now - we use the decomposition and the time-varying spectral gap to
forecast returns
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Figure: Market Latent Component Dynamics
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(a) The spectral gap measures the difference in terms of volatility of quarterly returns
between the leading component and the first trailing component. The cumulative gap
measures the difference between the leading component and the sum of all trailing
components. Data are quarterly from 1967 Q1 to 2016 Q4. Fama-French and Carhart
factor returns are from Ken French. NBER recessions are in blue.
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Table: Market Return Predictability: Spectral Gap and Dividend Yield

Predictor k (quarters) coefficient φ̂j,k t-statistic R2 adj.R2

I . 1 2.386 2.770 0.038 0.033
Spectral Gap 2 4.519 3.650 0.065 0.060

4 8.009 4.805 0.108 0.104
8 14.755 6.893 0.203 0.199

II . 1 64.066 1.256 0.008 0.003
Dividend Yield 2 143.247 1.929 0.019 0.014

4 243.685 2.385 0.029 0.024
8 355.273 2.555 0.034 0.029

(a) Panel I shows out of sample predictability of market returns by the spectral gap.
The spectral gap is the difference between the conditional volatilities of the permanent
and first transitory factors, measured by the second conditional eigenvalue of the
empirical decomposition of asset returns. II . shows the out of sample predictability for
the dividend yield. The 12-month moving average of monthly dividends, the market
index level and cay are from Goyal and Welch. Fama and French factor returns quarterly
are from Ken French. Data are quarterly from 1967 Q1 to 2015 Q3.
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Table: Market Return Predictability: Spectral Gap and cay

Predictor k (quarters) coefficient φ̂j,k t-statistic R2 adj.R2

III . 1 47.513 1.944 0.019 0.014
cay 2 101.006 2.821 0.040 0.035

4 196.512 3.974 0.076 0.072
8 388.117 5.901 0.157 0.152

IV . 1 1.484 2.136 0.023 0.018
Market Gap 2 2.902 2.895 0.042 0.037

4 5.297 3.896 0.074 0.069
8 9.150 5.095 0.122 0.118

V . 1 -35.198 -2.537 0.032 0.027
Asymptotic Gap 2 -63.940 -3.193 0.050 0.045

4 -118.563 -4.394 0.092 0.087
8 -228.033 -6.577 0.189 0.184

(a) Panel III . shows out of sample prediction statistics for cay. The spectral gap
excluding non-market volatility is given in panel IV . Panel V reports predictability by
the transformed gap s(Λ) : log(s(Λ)) = −(1 − Λ1−2)−1 written to approach zero
asymptotically. cay is from Goyal and Welch. Fama and French quarterly factor returns
from 1967 to 2015 are from Ken French.
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Figure: Time-Varying Expected Quarterly Market Returns
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(a) Time-series of conditional forecasts, estimated out of sample from the spectral data
of a latent Markov model. The spectral data are identified from the principal
components of the covariance matrix of realized returns. Quarterly Fama-French and
Carhart model returns data 1967 Q1 to 2016 Q4 from Ken French. Dividends, earnings
and cay data are from Goyal and Welch 2008. NBER recessions are in blue.
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Figure: Time-Varying Expected Semiannual Market Returns
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(a) The spectral gap is the ratio of the first and second eigenfunctions of the Markov
generator. The eigenfunctions correspond to i) the invariant (asymptotic) measure over
underlying states, and ii) the empirical transitions, respectively. Quarterly Fama-French
and Carhart model returns data 1967 Q1 to 2016 Q4 from Ken French. Dividends,
earnings and cay data are from Goyal and Welch 2008. NBER recessions are in blue.
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Past Forecast Errors Extend the State Space

Forecasts cannot be replicated in space of contemporaneous test
assets

Run alternatives separately

Rt+1,j = a0 + a1Πt + νt,j

Rt+k,j = a0,k + a1,kΠt,j + ut,j

Reject H0 : a1,k − ak1 = 0 individually, F-test jointly

Conditional forecast errors are not deterministic functions of horizon k

Contemporaneous returns are not a Markov state
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Table: Value Predictability: Spectral Gap

k (quarters) variable estimate t- statistic r.squared adj.r.squared

1 σ(ζ̂1) -79.5 -1.427 0.010 0.005

2 σ(ζ̂1) -370.5 -4.598 0.100 0.095

4 σ(ζ̂1) -576.4 -4.993 0.117 0.112

8 σ(ζ̂1) -666.7 -4.131 0.085 0.080

1 σ(ζ̂2) 28.84 1.501 0.012 0.006

2 σ(ζ̂2) 125.66 4.508 0.097 0.092

4 σ(ζ̂2) 191.04 4.768 0.108 0.103

8 σ(ζ̂2) 214.77 3.831 0.074 0.069

(a) σ(ζ̂1) is the volatility of the spectral gap in percentages and σ(ζ̂2) is the level
of the volatility of the spectral gap. Variables are predictors in a linear regression
of HML returns. Data are from Q1 1967 to Q3 2015.
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Table: Momentum Predictability: Spectral Gap and Earnings

k (quarters) variable estimate t-statistic r.squared adj.r.squared

1 ζ̂1 -0.460 -1.588 0.013 0.008

2 ζ̂1 -0.811 -1.990 0.020 0.015

4 ζ̂1 -1.757 -3.090 0.048 0.043

8 ζ̂1 -3.463 -4.731 0.108 0.104

1 EP 25.98 1.340 0.009 0.004
2 EP 52.92 1.952 0.019 0.014
4 EP 86.58 2.269 0.026 0.021
8 EP 130.60 2.637 0.036 0.031

(a) Roughly half the fraction of variation is forecastable in momentum returns in
comparison to market and HML returns. The gap variable dominates earnings to price
ratios, and other common predictors (not reported). Data are from Q1 1967 to Q3 2015.
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Replicating Portfolios

What can returns to the portfolios that replicate our forecasts tell us
about efficiency?

Kiefer Expected Returns 27 / 37



Table: Sharpe Ratio Comparisons
Value, Momentum, and Size Timing Portfolios

Strategy Value Penultimate Trailing Value Timing

Monthly SR
Full Sample 0.177 0.230 0.283 0.301
Pre-2007 0.190 0.259 0.223 0.243

(3.403) (2.920) (3.191)

Strategy Momentum Momentum Timing

Monthly SR
Full Sample 0.2801 0.3283 0.3009 0.3284

(4.055)

Strategy Size Size Timing

Monthly SR
Full Sample 0.1352 0.2138

(2.941)

(a) Top: Full sample and pre- 2007 financial crisis Sharpe ratios and t- statistics (pre-crisis) for
HML and HML-timing portfolio by component. Mid: Sharpe ratios for momentum and
momentum timing, and the first two components of the expected return factors weighted by to
their contribution to momentum. Lower panel: size, size timing portfolio and market Sharpe
ratios. Test assets are Fama-French FF25 Size/BTM plus 10 momentum portfolios. Factor data
are the FF3 plus Momentum, quarterly 1927 Q1 to 2015 Q3.
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Replicating Portfolios

What can returns to the portfolios that replicate our forecasts tell us
about risk?
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Table: Cross-sectional Pricing
Market and Value Timing Portfolios

coefficient λ̂M s.e. t-stat λ̂V s.e. t-stat Test Economy

α 0.446 1.592 0.280 FF3 +
Market timing 9.711 2.514 3.862 Market Timing
HML 1.307 0.426 3.066
Mkt res 3.618 1.544 2.344
SMB 0.814 0.506 1.609

α 0.978 1.738 0.563 Carhart +
Market timing 7.989 2.627 3.042 Market Timing
HML 1.394 0.405 3.444
Mkt res 2.721 1.790 1.520
Momentum 0.662 1.862 0.355
SMB 0.771 0.504 1.529

α 2.293 1.702 1.348 FF3+
Value timing 9.982 2.507 3.982 Value Timing
HML res -0.486 0.182 -2.671
MktRF -0.007 1.593 -0.004
SMB 0.860 0.508 1.692

(a) Coefficients are prices of risk. Factors include the market residual Mktres, HML and SMB
(top panel) and the market residual, HML, SMB, and Momentum (lower panel). Test assets are
the Fama-French FF25 Size/BTM portfolios, with momentum portfolios in the lower panel.
Robust standard errors are GMM. Both standard errors and t− stats are reported for
convenience. Factor data are the FF3 factor returns. Data are quarterly from 1927 Q1 to 2015
Q3.
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Figure: Empirical Distribution of Risk Prices
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(a) Frequencies of conditional (time-series) risk prices for each orthogonalized source of
variation. The leading factor represents permanent shocks to the economy, while the
penultimate factor prices exposure to unexpected innovations in time-varying expected
returns. Expected returns vary predictably throughout the sample. Conditional risk price
estimates are the eigenvalues of the conditional covariance matrix of returns and return
forecasts. Quarterly data Q1 1967 to Q3 2015.
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Discussion: US Equities

Measuring conditional risk prices in equities is valuable

Expected returns not directly observable

Complex interaction between different levels of aggregation

But many other markets are relevant. Bonds. Overlapping markets.
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The Moral of the Story

Markov structures contribute to empirical asset pricing

The spectral gap measures changes in the distribution of priced risk
across factors

Returns (e.g., pricing kernel) decompositions: permanent versus
transitory; conditioning versus transitioning

Conspire to reconcile time-series and risk models:

Time-varying cross-sectional risk premia predict time-series returns
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Takeaway: Stylized Facts

The spectral gap predicts returns out of sample
I Market: annual o.o.s. R2 of 10.8%
I Value: annual o.o.s. R2 of 11.7%

Cross-sectional return volatility concentrates countercyclically on
permanent shocks to capitalization

Timing portfolio cross-sectional pricing implications
I Size is not a risk factor! (Berk)
I Value is transitory risk
I Latent market component is significant (CAPM)
I Momentum is “like” the Market
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Implications for quantitative models of long-run risk, ambiguity...

Kiefer Expected Returns 35 / 37



Expected Returns and Factor Timing

Thanks
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Note on Mixing Times
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(a) Rolling correlations between principal components and smoothed latent factors. The
differences between the two are highlighted by the outlying correlations between the PCs
and the Markov bases. Downturns in the business cycle are marked by jumps from zero
to near one, in absolute value, in the correlation between the trailing components of the
two models.
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