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Abstract

New light is shed on U.S. stock markets by studying ”long memory” portfolios. These port-
folios eliminate path dependence in common test asset returns, rendering transition dynamics
Markovian. Common variation in returns is identified in terms of a martingale component and
one or more asymptotically negligible transitory components. We find the concentration of re-
turn volatility on the martingale component - the spectral gap - is countercyclical and predicts
annual market returns out-of-sample (o.o.s.) with an R2 of 10.8%. Value (HML) predictability
is concave and front-heavy, peaking at a one-year 14.7% o.o.s. R2. In contrast, the momentum
predictability term structure is convex, insignificant on the short end, but accelerates to 31.4%
o.o.s. R2 at the three-year horizon. We provide evidence the value premium is compensation
for exposure to business cycle risks, and that excess returns to size (SMB) are not risk premia.
Our findings imply new restrictions on the set of viable parametric asset pricing models.
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1 Introduction

Linear risk factor models reduce large complex markets to a handful of portfolios, making empir-

ical and theoretical studies of asset markets tractable and efficient. This widely used reduction

in dimension is a structural implication of equilibrium asset pricing theory: the so-called factor

replicating portfolios are sufficient because the distribution of any security’s returns can be charac-

terized in terms of its exposure to these portfolios. While this simplification is exploited routinely

in the context of unconditional factor modeling, it is rarely used to reduce complexity in problems

of predictability.

This is not because equilibrium asset pricing theory is silent on dimension reduction in the

time series. Consider a constant relative risk aversion (CRRA) representative agent economy with

stochastic volatility - in this model, the conditional volatility of the pricing kernel is simply the risk

aversion coefficient times the volatility of aggregate consumption growth. Predictable variation of

any asset’s excess return can be quantified using its beta, once we have the pricing kernel. The

dimension reduction - from a large set of portfolios to the pricing kernel - evident in this model un-

derscores a general implication. If the prices of risk vary through time, their forecasts are sufficient

to forecast the excess returns of arbitrary portfolios.

We exploit these implications to parsimoniously characterize conditional mean returns in real

time. The method is simple to implement using principal components analysis (PCA) and single-lag

vector auto-regressions VAR(1), making it accessible to practitioners and regulators. By appealing

to the pricing kernel structure in the time series, we also exploit the theoretical implication linking

the dynamics of aggregate risk to the systematic components of predictability. We present several

positive implications related to the method’s success.

The primary challenge is the estimation of conditional means. Our approach is to construct

a richer information set for realized returns with the goal of attaining a simplifying Markovian

structure. Along with one-period realized returns, we include rolling returns from portfolios of the

same assets that are held ”to maturity” without rebalancing. These buy-and-hold portfolios store

information about today from several previous periods, and then reveal the news relevant for those

periods along with today’s realized returns.

The information in these portfolios is redundant in the context of prevailing parametric asset

pricing models. A sufficient condition for these portfolios to be redundant is that contemporaneous

returns comprise a first-order Markov state vector. Empirically, this is not the case at mid to low

frequencies in U.S. stock and fixed income markets1 With the judicious inclusion of buy and hold

portfolios, the Markov condition can be satisfied. From here, a known decomposition of Markovian

1A notable case is provided in Cochrane and Piazzesi 2005.
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transition dynamics identifies systematic transitory variation - i.e., the factor structure of time-

varying expected returns.

A critical conceptual point underpins the preceding description. The problem of estimating

conditional expectations for possibly many assets was reduced to estimating parameters of a joint

transition distribution for a few common sources of variation. But why might this be an easier task

and why might it be justified? After all, if conditional means are prohibitively difficult to estimate,

any number of them is prohibitive.

The answer expands on the point made by our CRRA example above. In equilibrium, the risk

price is a market-wide variable - the volatility of the pricing kernel. Assuming no arbitrage, we can

recover individual expected returns from an estimate of market covariance. Roughly, while the Q−
measure lets one avoid calculating drifts in a Black-Scholes option pricing setting, it also facilitates

the recovery of individual drifts in a setting where neither the drifts nor the Q− measure are known

but the Q− measure is better estimated.

We find evidence this connection is powerful for estimating expected returns. The spectral gap

measures the fraction of priced risk that is time varying and predicts the market with an out-of-

sample R2 of 10.8% annually. The spectral gap is also used to predict portfolio returns. We forecast

the value (HML) and momentum (UMD) premia with annual o.o.s. R2 ’s of 14.7% and 6.7% respec-

tively. The forecasts highlight cross-sectional differences in predictability term structures. At the

two -year horizon, momentum predictability reaches 14.5%. While market and momentum forecasts

exhibit increasing rates of explained variation, the value premium is most predictable at a 1-year

horizon.

We investigate the theoretical implications of our findings in two ways. First, for each of the

Fama and French risk factors, we replicate the predictive series obtained from the spectral gap

within the space of test assets. This allows us to quantify the efficiency gains relative to the under-

lying factor models. Like the forecasts, the timing portfolios are constructed in real time. Unlike

the forecasts, the timing portfolios are tradeable. We find returns to the timing portfolios have

higher ex-ante Sharpe ratios and higher average realized Sharpe ratios than the underlying factors.

Second, we construct a time series of conditionally unpredictable returns from each of the tim-

ing portfolios. We test whether exposures to these shocks can explain cross-sectional variation in

returns. In particular, using the underlying factor replicating portfolios as benchmarks, we isolate

incremental changes to cross-sectional performance. Gains in efficiency from the market, momen-

tum and value timing portfolios are priced in the cross-section, while gains from size (SMB) timing

portfolios are not.

Classically, an empirical risk factor is formed in two steps. Traded assets are sorted into bins

according to a characteristic, such as book-to-market equity. Then, a zero-cost portfolio is formed
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by shorting the lowest bin and buying the highest bin. When the sorting characteristic proxies for

exposure to an undiversifiable source of risk, mean returns to the zero-cost portfolio are proportional

to the unconditional price of exposure to this risk. The resulting factor replicating portfolios form

the basis of empirical risk factor models.

However, conditional and unconditional expected returns differ systematically. The dividend

yield, cay, and other variables forecast market returns, producing estimates of the time-varying ex-

pected returns.2 In equilibrium the expected excess return on the market is equal to the market risk

price squared (uniquely up to changes in basis). Similarly, portfolio-level forecasts can be used to

estimate time-varying risk prices for value (HML), size (SMB), momentum (UMD) and other non-

market factors. Importantly, systematic variation in expected returns contains the time-variation

in factor risk prices. When all systematic variation is priced, the two are equivalent.

Evidence suggests the term structure of equity risk is not flat, and that the sign of the slope

changes depending on economic conditions.3 Information in the full term structure may be relevant

for forecasting single-period returns, but the exact term structure is not observed and no consensus

estimation method exists. To capture this information while remaining agnostic about the struc-

tural model, we construct return forecasts of priced risk factors for several horizons separately.

Henceforth we refer to these forecasts as nominal forecasts.

To estimate time-varying risk prices, we augment asset returns with nominal forecast errors,

fitted within each rolling window separately for several horizons. The nominal forecasts we use

are fitted values of Fama-French risk-factor returns on standard (lagged) predictors, such as the

dividend yield and past returns. We reject two important null hypotheses that characterize nominal

forecasts. The first is that nominal forecasts over different horizons are deterministic functions of

each other. The second is that every nominal forecast is replicable in the space of (contemporane-

ous) test assets.

The signals in the nominal forecast errors are a key input for extracting the latent factors and

risk price estimates. Consider an event of the sort: “nominal market forecast errors at the 4-year

horizon tend to be high when one-month HML returns are low.” The information in this event is not

contained in contemporaneous realized returns if the sequence of nominal 4-year market forecast

errors cannot be replicated by a portfolio of test assets.4 Conditioning on these events is valuable

empirically. In addition to refining the information set, nominal forecast errors are chosen in exactly

the linear combinations of past returns that justify a Markov representation.

2The series cay is constructed in Lettau and Ludvigson (2001) to capture deviations in the consumption-wealth
ratio from its long-run mean.

3Binsbergen and Koijen (2016) provide a thorough survey.
4Specifically, today’s realization of the nominal 4-year market forecast error is the difference between today’s

one-period realized market return and the prediction of that return made 4-years ago.
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Given a Markov representation of returns - including past returns, in the case of U.S. equities

- we run a classical principal components analysis for each period over a fixed history length. The

PCA maps to a decomposition of a generic vector Euler equation when dynamics are Markovian.5

The history length is chosen to isolate fluctuations at a particular distance from statistical equi-

librium, controlled by the so-called mixing times. The representation is updated in each period by

repeating this construction.

The construction captures changes in the risk price and composition of transitory factors while

keeping the scale of the average transitory fluctuation fixed at a constant fraction of total volatility.

Technically, for a given threshold, we keep the mean mixing time fixed. Changes in the risk price

and composition of transitory factors correspond to systematic fluctuations in expected returns. We

find that while an average of 86% of quarterly return volatility is concentrated on permanent shocks

to market capitalization, the forecasting power comes from incorporating the systematic predictable

variation in expected returns - the expected return factors.

Writing the Euler equation in terms of decomposed returns shows the spectral gap is informative

about future expected returns. A naive test of predictability using the lagged spectral gap predicts

quarterly, semi-annual and annual market returns with out-of-sample R2s of 3.8%, 6.5% and 10.8%.

More sophisticated statistics and existing predictors are no better than the lagged spectral gap out

of sample, with cay coming in second with at an annual o.o.s. R2 of 7.6%. Gap statistics also

forecast portfolio returns, predicting value (HML) with an annual out of sample R2 of 14.7% and

Momentum (UMD) with an R2 of 6.4% (16.1% biannually).

Portfolio-level predictability term structures are significantly heterogeneous. Explained varia-

tion increases monotonically with horizon for the market and momentum risk factors. For value,

explained variation is hump-shaped, with a maximum R2 corresponding to the one-year forecasting

horizon and decreasing afterward. We find the market loads with a coefficient 0.98 on shocks to the

leading component. The leading component’s autoregressive coefficient is indistinguishable from

zero (the point estimate is 0.089 with s.e. 0.072). In contrast, value returns load significantly on

the penultimate factor. The penultimate factor tracks common variation in expected returns - the

autoregressive coefficient is 0.649 with an adjusted standard error of 0.092.

In addition to the concave predictability term structure for the value premium, we find the

momentum term structure is increasing and convex. Forecast horizons inside of 1 year feature

rapidly increasing predictability in the value premium, while momentum is almost unpredictable.

Forecast horizons longer than one year feature decreasing predictability of the value premium and

simultaneous rapid increases in predictability of the momentum premium. Predictability of market

expected returns increase linearly over the same forecasting horizons.

5A formal description of this procedure is given in section 5.5.1.
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Value-weighted dividend yields play a key role in the construction of productive nominal fore-

casts. Using the value weighted CRSP index ex-dividend in place of dividend yields when construct-

ing the nominal forecasts significantly restricts the predictive power for each factor other than size.

However, predictability for the market picks up at the long end, suggesting capital gains have a

small but significant role in positively predicting aggregate expected returns over lower frequencies.

The equal-weighted CRSP ex-dividend index input generates predictive power for size but insignif-

icant predictive power for the value premium, and significantly reduced predictive power for the

market and momentum premiums.

Our findings are consistent with existing evidence on predictability and dividend yields. Nom-

inal forecasts using single lags of dividend yields produce factor return forecasts that are inferior

but nonetheless dominate dividend yield forecasting directly. Dividend yields are highly persistent,

fluctuating with a half-life of roughly 15 years, and forecast returns. From this standpoint, that

the full term structure of forecast errors is informative about expected returns is unsurprising - it

is certainly informative about future yields.

We find the spectral gap is a meaningful macroeconomic indicator on its own. Dynamics of the

spectral gap measure changes in the concentration of volatility on the leading priced risk factor.

In the US stock markets, we find return volatility concentrates countercyclically on permanent, or

“long-run” shocks. These findings have implications for parametric stochastic discount factor (SDF)

models. Because the spectral gap is an accessible object in any Markov model of asset prices, these

findings can help discriminate among competing parametric theories.

The prices of incremental gains from timing portfolios are informative about the risk content

of the underlying factor. By projecting the factor forecasts back on to the space of test assets, we

limit our analysis to changes in the distribution of risk across portfolios because the total risk is

constrained to be the value-weighted excess returns of the test assets. Relative efficiency gains mea-

sure the intensive margin of factor risk. Marginal efficiency gains arise when marginal and average

risk prices diverge. We reject that the marginal prices of exposure to the value and momentum

portfolio returns are zero, but we cannot reject that the marginal price of exposure to size is zero.

The study proceeds with a discussion of the literature, followed by a Markov model of asset

returns. Section 4 describes the empirical tests derived from the Markov model. The data and

empirical results are reported in sections 4.3 and 4.4. Appendices contain technical details and a

handful of ancillary charts and tables.
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Figure 1: Decomposition over Finite State Space
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(a) Predictable fluctuations are identified using a decomposition of transition probabilities. The probability
of moving to x1 given the current state x2 is p2,1 = µ0(x1) +γ21. The invariant probability µ0(x1) does not
depend on x2, and dominates forecasts asymptotically. The transitory correction γ21 becomes negligible in
large time, but contributes importantly to local dynamics. Perron-Frobenius and spectral theories provide
decompositions of the signed measures ν : X ×X 7→ R rather than the state space X itself. This point
is clear for finite-state ergodic processes, pictured here, where it does not make sense to claim subsets of
finitely many points are transitory: all points in an ergodic set are visited with probability one in large
time.

2 Related Work

Alvarez and Jermann (AJ) (2005), and Hansen and Scheinkman (2011) factorize the pricing kernel

into martingale and transitory components. (AJ) find that volatility of the growth rate of the mar-

tingale is roughly 90% of the volatility of the stochastic discount factor. Hansen and Scheinkman

(2011) use the Perron-Frobenius theory to isolate the asymptotic risk-return tradeoff for an ag-

gregate payoff functional when the underlying dynamics are Markovian. Borovicka, Hansen and

Scheinkman (2016) point out the structure and interpretation of the Perron-Frobenius estimate

depends heavily on model specification. We use a Perron-Frobenius decomposition to identify

predictable fluctuations in latent factors that are negligible asymptotically. These components con-

stitute roughly 15% of the total variation in returns, corroborating findings in (AJ).

Chen, Roll and Ross (1986) find that exposure to innovations in the term spread, credit spread,

and industrial productivity help explain cross-sectional variation in average stock returns. Hansen

and Jagannathan (1991), (AJ), Ross (2015), and Backus and Chernov (2008) argue that while

important work is done using macroeconomic variables to understand asset prices, it is also the

case that equilibrium prices reveal information about the macroeconomy. In particular, Hansen

and Jagannathan (1991) study restrictions placed by observed prices on the mean and variance

of the pricing kernel and argue the pricing kernel must be an order of magnitude more volatile

than consumption growth to justify the observed Sharpe ratios. Backus and Chernov (2008) study
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restrictions on pricing kernel cumulants implied by observed prices and use evidence of higher mo-

ments to rule out symmetric dynamics. Ross (2015) argues for recovery of the underlying physical

transition dynamics from returns. To our knowledge, identification of persistent dynamics in the

pricing kernel from the covariance matrix of returns is a novel contribution.

Koijen, Lustig and Van Nieuwerburgh (2017) propose a three-factor with a separate role for

business-cycle fluctuations to explain average returns to stock portfolios sorted on book-to-market

equity and maturity-sorted treasury portfolios. Cochrane and Piazzesi (CP) show a single bond

factor constructed from a linear combination of forward rates predicts returns on bond portfolios of

any maturity and forecasts returns in equity markets. The (CP) factor describes transitory fluctua-

tions in the Koijen, Lustig and Van Nieuwerburgh economy; the market factor captures permanent

shocks to cash flow levels, and the third factor updates inflation expectations. Our findings corrob-

orate and extend their classification of factors. We show over 90% of the variation in the market

and the momentum (UMD) factor is driven by innovations with no transitory content, while over

70% of the variation in value (HML) is explained by the transitory factors.

Fama and French (1992, 1993) and Asness (1994) document the importance of book-to-market

equity for explaining cross-sectional variability in average returns and establish the value (HML)

and size (SMB) factors to augment the single-factor (CAPM) model. Jegadeesh and Titman (1993)

and Moskowitz and Grinblatt (1999) study momentum by asset and industry, respectively, and find

a cross-sectional ranking of past winners and losers incrementally improves dynamic efficiency prop-

erties of the Fama-French three factor models. Berk (1995) points out that if size is the expected

cash flow level, and two firms have identical “size” but one has lower market cap, it is because it

has a higher discount rate. Mechanically, size inversely predicts average returns and will appear to

be priced whenever a true factor is missing. We find incremental efficiency gains from timing size

are not priced, while gains from timing the market, momentum and value are priced.

Several papers argue for improvements in the prevailing constructions of Fama-French factors.

Gerokos and Lihnnainmaa (2012) argue that the HML factor returns can be decomposed into price-

driven and book-driven elements, and that only the price-driven component of the HML factor

returns can explain cross-sectional variation in returns. Asness and Frazzini (2013) argue that

HML contains about 20% momentum, and propose a construction of HML that isolates the “pure

value” component. Lihnnainmaa (2015, 2016) finds accrual, investment, and profitability factor

constructions that are preferred to the Fama French (2015) constructions for cross-sectional asset

pricing. We find evidence the value premium is compensation for shocks to the persistence of ex-

pected returns. In contrast, we find momentum is compensation for i.i.d. shocks to realized returns.

Binsbergen, Brandt, and Koijen (2012) synthesize dividend strips at various maturities to an-

alyze the term structure of equity risk. They find that short-run cash flows have higher average
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returns that the market, implying a downward-sloping term structure of equity premia. Ait-Sahalia,

Karaman, and Mancini (2015) provide evidence that the sign of the slope is time-varying and pro-

cyclical. Schulz (2016) argues the downward sloping term structure becomes insignificant when tax

rates specific to dividend income are considered. Weber (2016) sorts stocks based on a measure of

cash flow duration and finds high-duration stocks earn roughly a one-percent premium monthly over

low-duration stocks, providing term-structure evidence that does not rely on synthesizing dividend

payments. This set of findings motivate us to study nominal forecasts of returns on equity portfolios

separately at different horizons.

Bandi and Tamoni (2015) implement a time-scale decomposition of returns and consumption

growth by projection on the Haar basis. The result is a representation of the time-series of returns as

the sum of moving averages over J non-intersecting intervals of increasing scale 2j j ∈ {0, 1, ..., J}.
Severino (2014) shows existence of time-series decompositions based on the sequential application

of an isometric operator. The decomposition splits a Hilbert space into an infinite direct sum of

rank-one prediction-error subspaces and that sum’s (possibly empty) orthogonal complement. The

derivation generalizes the Wold representation. Our decomposition is most related methodologi-

cally to Bandi and Tamoni (2015) and Severino (2014). The functional basis in our decomposition

is identified from a PCA of a generalized covariance matrix of realized returns.

Bansal and Yaron (2005), and Hansen, Heaton and Li (2008) propose and evaluate slow-moving

latent growth factors as explanations for unconditional risk premia. Bansal, Kiku and Yaron (2010)

sharply characterize the distinction between long run risk - captured by shocks to persistent levels

driving growth, and business cycle risk - captured by shocks to persistent growth directly. Hansen

and Sargent (2007, 2016) outline the similarities between long-run risk and the implications of ro-

bust control policies in financial markets. The authors show the long-run risk model is the model

a robust Epstein-Zinn investor would appear to have referenced ex-post. We contribute to this

discussion by quantifying slow moving changes in the concentration of return volatility on long-run

shocks. Estimates of this quantity predict portfolio returns and contribute to priced factor risk,

suggesting a new layer of tests from within parametric long-run-risk or ambiguity aversion models.

Jagannathan and Wang (JW) (1996) take a CAPM model with conditionally dependent pa-

rameters and condition down. It is well known that the unconditional version includes correction

parameters capturing the correlation between time- varying exposures and time- varying risk prices.

JW circumvent the problem of obtaining conditional estimates directly by using the BAA− AAA
credit spread as a proxy for the time-varying risk price. They provide GMM estimates that support

the conditional CAPM over the implied constant parameter CAPM tested classically. In U.S. stocks,

we provide evidence the latent pricing kernel contains the required forecasting variables itself. As

a diagnostic, we find including the BAA− AAA credit spread in the calculation of the covariance
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matrix generates forecasts with o.o.s. R2 gains of 0% to 2% annually, depending on the portfolio

and subsample.

Cochrane (2011) surveys the in-sample evidence suggesting that, across many asset classes, low

yields (high prices) today predict low returns in the future - and not cash flow growth. The im-

portance of jointly restricting cash flow and yield parameters in a vector-autoregression (VAR)

for evaluating the predictability of discount rates is given by Cochrane (2008). Santa Clara (2015)

finds evidence that dividend yields in fact predict cash flows the portfolio-level. Brennan and Taylor

(2016) find aggregate and portfolio-level return predictability out of sample. The authors distin-

guish risk-based sources of predictability from potentially non-equilibrium present-value predictors

by comparing variables obtained from the covariance matrix with those obtained from replicating

portfolios for present values of cash flow news and discount rate shocks. We base aggregate and

portfolio-level o.o.s. forecasts on a small number of common factors - also advocated by Cochrane

(2011). To quantify the risk content of our predictors, we test whether the incremental efficiency

gains, measured by the difference in returns between a forecast replicating portfolio and the under-

lying target portfolio, are priced in the cross-section.

Chen (2005) argues that out of sample (o.o.s.) tests of predictability are well suited for studying

time series containing one or more discrete structural breaks. In Taiwanese markets, Chen finds that

o.o.s. predictive statistics capture discrete structural breaks in savings rates that predict declines

in investment rates that followed. Importantly, an in-sample vector-autoregression model misses

the break and fails to to reject the null of no-predictability. We provide diagnostics in section (5.5)

indicating our o.o.s. predictors react to structural breaks quickly relative to rolling beta and rolling

benchmark PCA models.

Goyal and Welch (2008) provide evidence that predictors in the literature perform poorly out of

sample, and that prediction quality in-sample is often confined to crisis periods. However, although

low in absolute terms, Goyal and Welch (2003) and (2008) find the relative forecasting power of the

dividend-price ratio is highest using out of sample predictions over the postwar sample ending in

1990. They argue the incremental efficacy of the forecasts arise through the ability of rolling beta

estimates to pick up changes in the data generating process (DGP). Similarly to Chen (2005), the

authors find a constant coefficient VAR model fails to generate a significantly non-zero R2. Our

predictive efficacy is not limited to crises, suggesting we capture important cases where the un-

derlying model changes smoothly but manifests as a significantly distinct process along sufficiently

non-overlapping subsamples.

Kelly and Pruiit (2013) implement a three-pass filter to forecast portfolio returns using a large

cross-section of predictor variables. They report test statistics derived to account for the fitting

procedure, and measure out-of-sample predictive R2 by fitting the model to data omitting the target
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period and predicting the target period. R2s on annual market predictability reach 13%. We report

comparable but lower annual market R2 of 10.8% without using cross-sectional data and without

using future data. Thus, our decomposition is informative in real time. However, the predictive

regressions proposed by Kelly and Pruiit (2013) apply to predictive settings where a Markov struc-

ture may not be warranted, while our identification relies on this structure.

Bryzgolva (2014) advocates for traded (price-based) proxies for risk factors over macro factors

for statistical reasons. A constrained LASSO-style regression penalizes candidate risk factors with

poorly measured exposures. Traded factor returns have low levels of idiosyncratic noise, making

exposures easier to measure and thus the LASSO procedure penalizes traded proxies less. This

helps rationalize the incremental gain in statistical significance from the timing portfolio returns

over the extracted latent process. Simultaneously, it underscores the improvements in significance

and precision of the timing portfolios relative to the conventional factor replicating portfolios.

Shrinkage estimation procedures - such as the LASSO for the covariance matrix - are a poten-

tially relevant exercise in our setting. We avoid this by first considering the factor returns only,

avoiding the rank-deficiency in cross-sections with many test assets. However, the inclusion of nom-

inal forecasts in the generalized covariance matrix estimation introduces rank deficiency. Moreover,

one may shrink towards a target horizon Sharpe ratio when the data matrix includes many horizon-

specific forecasts. For the purposes of this paper, we manage rank deficiency and sparseness by

exploiting the inner-unitary properties of the rotation matrices from a singular value decomposi-

tion. Cases of explicit shrinkage are delegated to future work.

We draw on tools from Markov processes, large deviations and random matrix theory. The

modern theory of large deviations is due to Donsker and Varadhan (1975a, 1975b) and Gartner

(1977), building on Cramer (1938) and Sanov (1957). Exponentially unlikely deviations of Markov

processes are described by the Perron-Frobenius theory (Varadhan (1983, 2008), Hansen (2011),

Borovicka, Hansen and Scheinkman (2016)). Brownian dynamics for the spectra of random matri-

ces were introduced by Dyson (1962a, 1962b). Erdos and Yao (2017) and Tao (2011) characterize

spectral dynamics for sequences of random matrices and nest Dyson Brownian motion as a special

case. Knowles, Yao and Yin (2014) provide asymptotics for outlying eigenvalues of covariance ma-

trices when the parameter dimension grows proportionally to sample size.

Interest in Markov-Chain Monte-Carlo (MCMC) methods drove a better understanding of con-

vergence rates for finite-state Markov chains. Estimates have been characterized in terms of the

log-Sobolev inequality (Diaconis and Saloff-Coste (1996a)), the Poincare inequality on graph rep-

resentations (Diaconis and Strook (1991), Tuominen and Tweedie (1994)), and the spectral gap

(Diaconis and Saloff-Coste (1996b), Saloff-Coste (2004)). Each of these build on Doob (1959), Nash

(1958) and more recently Anderson (1989). Diaconis (2009) provides an excellent discussion of
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related developments. Fukushima (2010) emphasizes quadratic and bilinear form representations of

Markov processes on general state spaces and touches on their spectral content. Chen, Hansen and

Scheinkman (2007) make this connection explicit for the Feynman-Kac semigroup.

3 A Markov Model of Returns

We construct an empirical model to use for forecasting. Sections 3.1 and 3.2 describe the process

environment and specify asset prices and a risk-neutral measure. Section 3.3 reviews the decom-

position. Section 3.4 provides an example to highlight the economics of equilibrium prices and

transitory fluctuations. 3.5 - 3.6 present the spectral gap, relates it to a martingale representation,

and characterizes the identification of the spectral gap from the empirical covariance matrix.

The lag operator and composition of the lag and Markov operators are defined on the path space

of the Markov chain, so some technical statements cannot be avoided. Extensive derivations are

left for the section (7) appendix, along with the complete set of proofs.

3.1 Market Prices

Undiversifiable risk arises from S - state Markov jump dynamics taking values in a finite ordered

set xt ∈ X := {x[1], ..., x[S] } ⊂ RS. Time is discrete. We take each x[j] ∈ {0, 1} so the state at time

t, xt = x[j] is characterized by the index {[j] : x[j] = 1}. Local dynamics of the Markov chain Xt

are described by the kernel function m(x[i], x[j]) := Pr(Xt = x[j]|Xt−1 = x[i]).

Sequentially traded state-contingent securities dn ∈ F (X) ⊂ RS are sufficient to build up rich dy-

namically complete cross-sections as in Arrow (1953). We specialize asset n = 0 to d0 = (1, 1, ..., 1)′.6

We will extend the marketable security space to include long-lived securities recursively, but we first

establish the benchmark asset prices.

Market equilibrium implies a positive pricing kernel exists and can be used in lieu of replication

to price arbitrary cash flows (Ross (1976), Harrison and Kreps (1979)). Let sj,t = sj(wj(xt), t) =

βtj s̃j(wj(xt)) be the marginal value of wealth for investor j, where βj ∈ (0, 1) captures time dis-

counting. For any asset n and market prices pn,t, individual optimality requires

sj,tpn,t = Et[sj,t+1dn(Xt+1)] (3.1.1)

6Contingencies dn are assumed to satisfy νdnd
′
n < ∞, which in finite dimensions under any positive probability

measure ν is equivalent to dn ·ei ≤M <∞ for every n, 0 ≤ i ≤ S and some fixed scalar M ∈ R, where {ei} , 0 ≤ i ≤ S
denotes the standard basis in RS .
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in each period t. In equilibrium, the stochastic discount factor (SDF) St,t+1 = S(Xt+1|xt, 1) encodes

market-wide preferences in observed prices, enforcing

sj,tEt[St,t+1di(Xt+1)] = Et[sj,t+1di(Xt+1)]

for any unconstrained investor j, and arbitrary i, t. In particular, 3.1.1 becomes

pn,t = Et[St,t+1dn(Xt+1)] (3.1.2a)

for every n given t and every t. We follow the convention in Alvarez and Jermann (2005) by modeling

the SDF as the ratio of the pricing kernels St,t+k = st+k/st = βks̃t+k/s̃t. Then, the pricing kernel

is the particular SDF when the reference period wealth is the numeraire st = S0,t = S(Xt|x0, t),
s0 ≡ 1. For the asset n = 0, p0,t = Et[St,t+1] = 1/rf,t is the price of a one-period default free bond

per unit of face value.

From 3.1.2a, the value of the replicating portfolio for any security n is given by

pn,t = Q̂kdn (3.2.2b)

where Q̂k := 1(xt,k)
′Q̂, 1(xt,k) is a column of zeros outside of the indicator at k, and xt,k is shorthand

for the conditioning event xt,k := {Xt = x[k]} . The risk neutral transition dynamics follow by

normalizing the entries of Q̂ so that the rows are probability measures as follows Qk := b−1t Q̂k with

bt = 1/rf,t = ι′Mkst.

3.2 Decomposition

A first-order transition distribution can be decomposed into two orthogonal components.7 Each

transition probability m(j, k) is comprised of a local transitory and a non-local permanent com-

ponent. The local components contains state-dependent transitioning information. The non-local

component completely determines asymptotic forecasts. Both components are important in finite

samples.

Let ι = 1S×1; then by our convention, Mι = ι. We assume the chain (X,M) is ergodic, which

implies a unique invariant µ′0 = µ′0M. The pair (µ0, ι) are the left and right eigenvectors of M,

respectively, normalized so that µ0 is a probability measure µ′0ι = 1. From these assumptions, we

7See proposition (7.1) parts I.− III. and corollaries (7.4)− (7.9)).
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obtain the representation for the dynamics of distributions over X

M′ = µ0ι
′ +M′

γ

Asset return dynamics inherit this representation

E[Rn,t+1(Xt+1)|xt,k] = 1(xt,k)
′Mrn

= rn + 1(xt,k)
′Mγrn

where rn := rn · µ0 = 1(xt,k)
′(µ0ι

′)′rn is the long-run mean return for asset n. The operator M′
γ

drives purely transitory variation.8 In corollary (7.6), we establish the classic Wold representation

applied to returns,

Rn,t+1 = rn + rn ·
∞∑
s=0

(M′
γ)s1(ut+1−s)

In lemma (7.2), we identify ν =M′1(x·,k) with probability measures over X given x·,k for any k .

Hence, the decomposition states that any transition probability can be written

pi,j = µj + γi,j (3.3a)

for order pairs x[i], x[j]. 3.3a indicates that conditioning on xt,i we arrive at xt+1,j with probability

equal to the long-run occupation rate of the coordinate j plus a correction term γi,j. In corollary

7.1.2, we show that Mγι = 0, i.e.,
∑

j γi,j = 0. Hence, if any individual term γi,j is nonzero for a

given i, then at least one of the entries is negative for that i.

Transition dynamics in general are distinct from dynamics of conditioning information, but

can be characterized tractably. Using proposition (7.1) and corollaries (7.2)-(7.3), expected return

dynamics are

Et[Rt+k]− Et−1[Rt−1+k] = ∆[(M′)
k
xt−1]

= ∆
(
M′

γ

)k
xt−1 + ∆Êt−1,k

The term ∆
(
M′

γ

)k
captures changes in transition probabilities conditionally. Following Dyson

8We assume throughout that the columns of M′ are not each identically µ0, so the decomposition is nontrivial
(i.e., M′γ 6= 0).
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(1962), the leading order terms for dynamics of
(
M′

γ

)k
are

∆[
(
M′

γ

)k
] = −(1− λ2)−kγγ′ + o (·) (3.1s)

The kernel function γ of Mγ can be viewed as the left eigenvectors of I −Mγ , even if M is not

reversible. Lower eigenvalues ofM are eigenvalues ofMγ . We show this in sections 7.4-7.5. Setting

〈γ, 1〉 = γ, and ∆Êt−1,k = 0 and conditioning,

Et[Rt+1]− Et−1[Rt] = −ζ−1t γγxt−1 (3.2s)

describes time-varying mean returns. ζt = λ1 − λ2 = 1− λ2 is the spectral gap of M.

The dynamics of spectral data provide a summary for the dynamics of the risk prices because

in equilibrium the risk prices are eigenvalues. We consider a fixed known covariance matrix plus

mean zero i.i.d. random perturbations.

4 Empirical Implementation

4.1 Nominal Forecasts

We construct nominal risk factor return forecasts within each rolling window for several horizons

k separately. Nominal forecasts are fitted values of factor returns on past dividend yields and past

returns. The sample window is truncated for each t depending on k, so that the effective windows

for nominal forecasts are τm(t, k) := [t− (TM − k), t]. In the main test results reported, we reduce

the window for all returns and forecasting series to that of the maximum horizon k nominal forecast

series, τm(t, k). More nuanced procedures do not improve the performance significantly.

Nominal forecasts should not be confused with the forecasts made using the decomposition,

which are the basis of the o.o.s. tests. The derived forecasts perform significantly better than the

nominal forecasts used as inputs because the nominal forecasting procedures exploit none of the

Markov structure of equilibrium asset returns.

4.2 Sample Window and Mixing

A distinction is made between the window size Tm and the mixing times N(ε0) for threshold ε0 >

0. As a benchmark, the fixed window size Tm proxies for the stationary mixing times Nt(ε0) =
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N(ε0, Rt−Tm,t). The mixing time at t is defined

Nt(ε0) := min
s

{
R+ 3 s ≥ t : max

x∈X
‖ ĥt,t+s(x)− µ0(x) ‖≤ ε0

}
In words, the mixing time is the shortest amount of time it can take for the maximum total

variation distance between rows of the transition matrix to be within a threshold of size ε0. Using

the convergence results from proposition (7.1) part (II), we can bound the mixing time

N∗t (ε0) = log(ζ0,t)
−1[log(ε0)− log(χt)] (4.2)

where χ0µ0 = ĥ0,0 is the initial statistical likelihood ratio of the conditional to the unconditional

distributions. Changes in the window size Tm are justified by changes in Nt(ε0), which for fixed

ε0 > 0 varies through estimates of χt and ζ0,t. We verify ex-post that we cannot distinguish the

sequence of mixing times Nt(ε0), t ∈ [0, T ] from a covariance stationary process.

It is also possible to choose the window size in each period Tm = Tm(t) to minimize the `2-

distance between the mixing time estimate for that period and a fixed target mixing time N0(ε0).

Here, the mixing time estimator is formally a transformation of a random sample. This objective

corresponds to a well-defined extremum estimator. However, empirically we find this step produces

very little movement in the window size Tm(t) over t.
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4.3 Data

For priced risk factors, we use monthly returns data on the Fama-French three-factor, Fama French

three factor plus momentum (Carhart), and Fama-French 5- factor models. The Fama-French three

factors are the Market, Value (HML) and size (SMB), rebalanced annually. Details are in Fama

and French (1993). Momentum is constructed from a portfolio long 2-12 month winners and short

2-12 month losers ranked in the cross-section and truncated at the 30% and 70% percentiles. Each

reported momentum sorted portfolio is an average of small and large-cap momentum stocks. Mo-

mentum is rebalanced monthly.

We consider several cross sections of test assets including the 25 size-BTM portfolios, the 25

size-BTM plus 10 Momentum portfolios, the 25 size -operating profit portfolios and the 32 size-

BTM-OP portfolios. The size-BTM portfolios are annually rebalanced and are comprised of the

intersection between five market-cap sorted stocks with five book-equity to market-equity (BTM)

sorted stocks. The size-BTM plus Momentum add 10 portfolios sorted on 2-12 month returns

cross-sectional rankings. The size-OP portfolios sort annually on operating profits (OP): “annual

revenues minus COGS, interest expense, and SG&A”, normalized by trailing book-equity, and in-

tersect with size. The factor returns data and the test asset returns data are obtained from Ken

French’s website.9

We use predictor variables from Goyal and Welch (2008). Data are available on Amit Goyal’s

website.10 We use monthly data for the rolling average 12-month dividends, the rolling average

12-month earnings, and the index level for the S&P500. Data are from 1926-2016. Monthly value-

weighted and equal- weighted index total returns and ex-dividend returns over 1926-2016 are from

CRSP. 18 portfolios sorted by cash flow to market capitalization and 18 sorted by dividend to mar-

ket capitalization over the same period are from Ken French. We form three high-low portfolios for

cash flow and three for dividends, leveraging the cash flow spread at denary, quinary and tertiary

scales. The breakpoints are available on Ken French’s website.

5 Empirical Results

5.1 Latent Factor Dynamics

Persistence estimates for the leading and penultimate latent factors are reported in Table 1. We

report coefficient estimates from a first-order autoregression for the demeaned factor processes. The

9 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
10http://www.hec.unil.ch/agoyal/
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Figure 2: Predictability Term Structures for the Carhart Factors
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(a) Out of sample forecast performance for each of the Carhart four factors. Value is forecasted by the
volatility of the spectral gap. The spectral gap is calculated up to time t using data from [Tm − t, t]
and used to forecast returns for various t + k, including returns between periods t + 1 and t + n + 1 for
n = 1, 2, 4, 8, 12. Top panel has Tm = 8yrs. Lower panel has Tm = 12yrs. Carhart Factors are the Fama-
French Market, Value and Size factors plus the Momentum factor (UMD). Quarterly data Q1 1967 to Q3
2015 are compounded monthly factor returns from Ken French’s website.
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leading factor exhibits no predictable deviation from its mean. In contrast, the penultimate fac-

tor is highly persistent. Fluctuations around the mean of the penultimate factor are predictable,

stationary and statistically significant. GMM standard errors adjust for serial correlation. The

sharp contrast in predictability between the leading and penultimate factors is consistent with the

predictions of the Markov asset pricing model with nonzero stationary mixing times.

Dynamics of the factors of realized returns are plotted in Figure 2. Figure 2 in combination

with Table 1 restate the findings in Alvarez and Jermann (2005) that the bulk of pricing kernel

variation comes from the permanent factor. Transitory factors are plotted in Figure 3, which shows

the time series of the time-varying expected return factors. Figure 1 charts the empirical densities of

conditional risk prices. Figure 4 plots the dynamics of the empirical spectral gap. The spectral gap

is strongly countercylical. The interpretation of Figure 4 is that volatility increases in bad times,

but so does the concentration of volatility on the permanent factor.

5.1.1 Latent and Conventional Factor Composition

The martingale factor captures 84% of the common time series variation in asset returns. The mar-

ket and the martingale factor are almost identical. The conventional value (HML) factor provides

a striking contrast to the market factor. Table 8 breaks down the market and HML loadings on the

latent expected return components. Variation in returns to the value factor load significantly on the

leading expected returns factor, which drives transitory predictable fluctuations in mean returns.

The conventional market factor does not significantly load on the expected return factors.

5.2 Forecasting

We use the common sources of transitory variation to predict factor returns out of sample. Results

are reported in Table 2. The spectral gap (lagged for predictive regressions) forecasts the market

returns with an o.o.s. R2 of 3.8% quarterly, 6.5% semiannually, 10.8% annually and 20.3% bian-

nually. Other variants of the spectral gap, including the common negative exponential transform,

perform similarly but no better. cay performs relatively well, giving an out of sample R2 of 7.6%

on an annual basis, while the dividend yield generates forecasts with o.o.s. R2 of only 2.9%.

This latter number contrasts with conventional wisdom because it is an out-of-sample estimate.

The original predictability studies by Campbell and Shiller (1989) were estimated in sample (see

Goyal and Welch, 2008). The roughly 10% R2 reported by Cochrane (2008) is calculated using

the Campbell-Shiller decomposition, which jointly restricts cash flow and discount rates by design.
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Table 1: Market Return Predictability by Dividend Yield, cay and the Spectral Gap

Panel I shows out of sample predictability of market returns by the spectral gap. The spectral gap is the
difference between the conditional volatilities of the permanent and first transitory factors, measured by
the second conditional eigenvalue of the empirical decomposition of asset returns. II. shows the out of
sample predictability for the dividend yield. Panel III. shows out of sample prediction statistics for cay.
The spectral gap excluding non-market volatility is given in panel IV . The 12-month moving average of
monthly dividends, the market index level and cay are from Goyal and Welch. Fama and French factor
returns quarterly are from Ken French. Data are quarterly from 1967 Q1 to 2015 Q3.

Full Sample Estimates Out of Sample Statistics

Predictor k (quarters) coefficient φ̂j,k t : H0(0) R2 adj.R2

I. 1 2.39∗∗ 2.770 0.038 0.033
Spectral Gap 2 4.51∗∗ 3.650 0.065 0.060

4 8.01∗∗∗ 4.805 0.108 0.104
8 14.76∗∗∗ 6.893 0.203 0.199

II. 1 64.066 1.256 0.008
Dividend 2 143.25∗ 1.929 0.019
Yield 4 243.69∗ 2.385 0.029

8 355.27∗∗ 2.555 0.034

III. 1 47.51∗ 1.944 0.019
cay 2 101.01∗∗ 2.821 0.040

4 196.51∗∗∗ 3.974 0.076
8 388.12∗∗∗ 5.901 0.157

IV. 1 1.48∗ 2.136 0.023
Market Gap 2 2.90∗∗ 2.895 0.042

4 5.29∗∗ 3.896 0.074
8 9.15∗∗∗ 5.095 0.122
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Figure 3: Time Varying Components for the Market, Momentum and Value
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(a) Dynamics for the components of common variation for the market, momentum and value expected returns,
expressed as a percentage of the total variation of factor returns. Expected return variation comprises roughly 20%
of the variation in total returns. Expected return variation comprising market returns contribute an average of less
than 14% of variation in total returns, and comprising momentum returns contribute an average of less that 5% of
the variation in total returns. Quarterly data Q1 1967 to Q3 2015. Fama French and Carhart factor model returns
are from Ken French’s website. NBER recessions are in blue.
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Table 2: Persistence of first and second components of realized returns.

The first component is not predictable, while the second and trailing components are predictable when
expected returns are time-varying. For the j’th component of returns we report the estimated autoregres-
sions

xt,j = φ0,j + φ1,jxt−1,j + ut,j

The components are obtained over rolling Tm = 15 year samples of realized returns supplemented with the
forecast errors from dividend yields over several horizons. A singular value decomposition of the generalized
covariance matrix orders orthogonal components by contribution to variation in realized returns and lower
frequency variation from surprises to historical forecasts. We report autoregressions over the full sample
for components j = 1, 2.

coefficient estimate s.e

Leading Factor φ̂0,1 0.312 0.624

φ̂1,1 0.089 0.072

Trailing Factor φ̂0,2 −0.059 0.032

φ̂1,2 0.649∗∗∗ 0.055

(a) The penultimate component of the realized returns is the leading component of expected returns.
Returns data are quarterly from Q1 1967 to Q3 2015. Fama French and Carhart factor model returns are
from Ken French’s website.

The forecasts in Cochrane (2008) are necessarily evaluated in sample using fitted values from a

vector-autoregression (VAR).

In fact, our evidence corroborates the importance of an aggregate measure of dividend yields for

forecasting risk premiums. While the short-horizon performance of the dividend yield is poor out of

sample, explained variation grows monotonically, resulting in the stylized fact that low yields today

(high prices) are followed by low returns tomorrow. As emphasized by Cochrane (2011), variation

in the dividend yield corresponds entirely to variation in mean returns (at the aggregated level),

and more so at the long end.

Our benchmark nominal forecast variable is the dividend yield for the CRSP value-weighted

index. We construct a rich information space for our decomposition by calculating optimal return

forecasts using the dividend yield, separately for lags of 2k, k = 0, 1, 2, ..., k+. Surprises from dif-

ferent lag lengths are calculated separately. An AR(1) generates signals that are all deterministic

functions of each other, eliminating signals relevant over different time scales when they exist.

We also find that constructing nominal forecasts using the CRSP ex-dividend value-weighted in-

dex return translates into significantly poorer performance. Value in this case cannot be forecasted.

The explained variability in market returns does not exceed 10% out of sample at any horizon in

this case. Interestingly, an equally-weighted dividend yield used to generate nominal forecasts also
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Table 3: HML Return Predictability

(a) Value return predictability, assessed over the entire sample using a time-series of forecasts made out of
sample. The predictive regression is

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

where Gj(ζ̂t ∈ {σ1/σ, σ2}. The rolling Tm samples are augmented with information contained in the
nominal forecast errors at lags 2k, k ∈ [0, 5] ∩N. Nominal inputs are listed. Data are from Q1 1967 to Q3
2015 from Ken French, Goyal and Welch (2008) and CRSP.

Full Sample Estimates Out of Sample Statistics

Nominal
Input

horizon
(quarters)

predictor estimate t : H0(0) R2 adj.R2

DP & 1 σ2 4.97 1.339 0.009 0.004
10-1 CF σ1/σ −7.37 −1.272 0.008
Portfolio 2 σ2 24.29 ∗∗∗ 4.505 0.096 0.092

σ1/σ −38.41 ∗∗∗ −4.573 0.099
4 σ2 40.14 ∗∗∗ 5.229 0.127 0.122

σ1/σ −67.46 ∗∗∗ −5.702 0.147
8 σ2 46.41 ∗∗∗ 4.31 0.092 0.087

σ1/σ −80.96 ∗∗∗ −4.887 0.115
12 σ2 46.15 ∗∗ 3.830 0.075 0.070

σ1/σ −84.34 ∗∗∗ −4.560 0.104

DP 1 σ2 28.84 1.501 0.012 0.006
σ1/σ −79.50 −1.427 0.010 −

2 σ2 125.66 ∗∗∗ 4.508 0.097 0.092
σ1/σ −370.56 ∗∗∗ −4.598 0.100 −

4 σ2 191.03 ∗∗∗ 4.768 0.108 0.103
σ1/σ −576.42 ∗∗∗ −4.993 0.117 −

8 σ2 214.77 ∗∗ 3.831 0.074 0.069
σ1/σ −666.78 ∗∗∗ −4.131 0.085 −

12 σ2 122.28 ∗ 1.941 0.020 0.015
σ1/σ −383.66 ∗∗ −2.107 0.024 −
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results in diminished efficacy. Unsurprisingly, size is hit least by this distinction. At the three-year

horizon, the value weighted dividend yield nominal input predicts 34.7% of the variation in returns

to the SMB portfolio. Using the equal -weighted yield generates an R2 of 30.5%.

Several features of the value forecasts reported in Table 3 are striking. First, at the annual hori-

zon, the variation in value (HML) returns is 14.7% predictable, and semiannually, 9.9% predictable.

Because HML is a priced risk factor, these percentages measure the fraction of the variability in

value premia that are predictable. Said another way, they capture the time-varying price of risk

for exposure to innovations in the HML replicating portfolio. Second, unlike market predictors,

which, as emphasized by Cochrane (2008, 2011), increase in explanatory power monotonically with

horizon, the value predictors have a half-life of about a year. In every case, the two year prediction

is less effective than the one year prediction.

The shape of the term structure of the time-varying value premium is robust to the choice of

predictor as long as the predictor works. We report two normalizations of the second moment of the

spectral gap that forecast HML returns. Every other priced risk factor we forecast has an upward

sloping term structure of predictability, making the value premium unique among priced sources

of risk in U.S. equity markets. This finding is also consistent with the findings in Koijen, Lustig

and Van Nieuwerburgh, showing value returns load on the transitory variation picked up by the

Cochrane-Piazzesi factor.

From Table 4. the momentum factor returns are predictable. The first two years explained

variation is low, but accelerates after the second year to meet or exceed market predictability after

the 3-year horizon. Momentum predictability jumps from 6.4% at one-year to 16.1% and 31.4%

at the two- and three- year horizons, respectively. The curvature of momentum predictability is

increasing and convex and in this way stands out from the nearly linear term structure of market

predictability. Standard market predictors do poorly with momentum, reported in Table (10).

Earnings to price, cay and the dividend yields all predict less than 3% of the variation in momentum

return at any horizon.

Figure (1) contrasts the term structures of return predictability for the value (HML), Momentum

(UMD), market and size (SMB) factor replicating portfolio returns. Explained variation grows

monotonically in forecast horizon for the market, momentum and size. Time-varying expected

returns to value are predictable in the short-run, but become negligible in asymptotic forecasts.

The market term structure is nearly linear. The momentum term structure is a locally increasing

convex function of horizon while value predictability is a concave function with a local maximum

at the one-year horizon. Forecasts are given by the lagged spectral gap normalized to match the fit

of the realized factor returns on rolling historical Tm = 15 year samples.

These forecasts meet or exceed existing predictors in the literature to our knowledge, with the
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Table 4: Market Return Predictability

(a) The spectral gap predicts market returns. Predictability regressions are calculated over the entire
sample. The predictor series ζ̂t is constructed using data up to t for forecasts of returns at t+k or t+1+k,
k ∈ {1, 2, 4, 8} on rolling windows of Tm =15yr histories. The predictive regression is

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

where Gj(ζ̂t) is a functional of the spectral gap time series that can vary only by portfolio, indexed by
j. The rolling Tm samples are augmented with information contained in the forecast errors from forecasts
made at various lags. The variable ζ̂ is shorthand for the empirical estimate of the spectral gap. Tr1 is
the (non-normalized) largest contribution to the trace of the covariance matrix. Monthly dividend yields,
Fama -French 3-factor and Carhart model returns and cay data are from Q1 1967 to Q3 2015 from Ken
French, Goyal and Welch (2008) and CRSP.

Full Sample Estimates Out of Sample Statistics

horizon
(quarters)

target predictor estimate t : H0(0) R2 adj.R2

1 RM ζ̂ 2.546 2.983 0.044
(Tr)1 1.354 1.893 0.018 −
ζ̂ + (Tr)1 1.169 2.683 0.036 0.031

2 RM,2 ζ̂ 3.827 3.065 0.047
(Tr)1 2.357 2.257 0.026

ζ̂ + (Tr)1 1.879 2.956 0.044 0.039

4 RM,4 ζ̂ 7.708 4.486 0.098
(Tr)1 4.682 3.249 0.054

ζ̂ + (Tr)1 3.778 4.320 0.091 0.086

8 RM,8 ζ̂ 13.181 5.626 0.151
(Tr)1 7.013 3.568 0.067

ζ̂ + (Tr)1 6.167 5.142 0.129 0.124

12 RM,12 ζ̂ 18.307 6.480 0.198
(Tr)1 9.032 3.791 0.078

ζ̂ + (Tr)1 8.494 5.800 0.165 0.160
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Figure 4: Value and Momentum Predictability Term Structures
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(a) Forecasts are given by the lagged spectral gap normalized to match the fit of realized factor returns
on the rolling historical Tm = 15 year samples. The size of circular nodes corresponds to the t -statistic
of the time-series coefficient estimates obtained on the full sample. The Fama-French Market, Value and
Size factors are quarterly from Q1 1967 to Q3 2015, compounded monthly returns from Ken French.

exception of Kelly and Pruiit (2013) in the case of market returns. Kelly et. al find an o.o.s R2

of 13% for the market, omitting windows in a neighborhood the forecast target.11 In the case of

momentum returns. Huang (2016) reports a monthly out of sample R2 of 0.5% for momentum

returns using the cross-sectional dispersion of moving average annual returns (the “momentum

gap”). This compares roughly to the spectral gap’s forecast R2 of 6.4% when scaled to the one-year

horizon.

Using the CRSP value-weighted index ex-dividend as the nominal input produces limited fore-

casting power but has interesting implications for the market. The market o.o.s. R2’s of 2.8% and

6.9% at the 1 - and 2 -year horizons accelerate to 16.3% at 3-years. At 3 years we report a significant

time-series coefficient point estimate 15.54 with t- statistic 5.76%. This suggests capital gains have

a non-negligible role forecasting aggregate returns over longer horizons. Using the equally weighted

CRSP ex-dividend index to construct nominal forecast inputs unsurprisingly allows our model to

forecast size, although not quite as well as with nominal dividend yield inputs. The former and

latter 3-year o.o.s. R2 for size are 30.05% and 34.7% respectively.

We reproduce the analysis shifted forward an extra period to address potential concerns about

systematic measurement error. If prices are measured with error in a persistent direction then

returns from contiguous intervals are spuriously correlated. This problem is not as likely in liquid

stock markets as over the counter or emerging markets contexts. This is confirmed in table 10 for the

11Using future observations implies these forecasts cannot be implemented in real time. However, they may be
a better measure of the forecasting ability of a theoretical investor within the model. Kelly et. al can also be
implemented in non-Markovian settings.
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Table 5: Size (SMB) and Momentum (UMD) Out of Sample Predictability

(a) Predictability regressions are calculated over the entire sample. The predictor series ζ̂t is constructed
using data up to t for forecasts of returns at t+k or t+ 1 +k, k ∈ {1, 2, 4, 8, 12}. The predictive regression
is Rt+k,j = a0 + a1ζ̂t + εt, where ζ̂t is the spectral gap time series. The rolling Tm = 15yr samples are
augmented with nominal forecast errors from forecasts made at various lags. Q1 1967 to Q3 2015 data
from Ken French, Goyal and Welch (2008) and CRSP.

Full Sample Estimates Out of Sample Statistics

Portfolio quarters k variable â1 t : H0 = 0 R2

Size 1 ζ̂ 1.067 2.252 0.026

(SMB) 2 ζ̂ 1.819 2.787 0.039

4 ζ̂ 4.175 4.507 0.098

8 ζ̂ 8.495 6.363 0.185

12 ζ̂ 12.874 7.485 0.248

Momentum 1 ζ̂ −0.544 −1.305 0.009

(UMD) 2 ζ̂ −1.207 −2.070 0.022

4 ζ̂ −2.939 −3.566 0.064

8 ζ̂ −6.209 −5.854 0.161

12 ζ̂ −10.395 −8.820 0.314
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case of momentum returns, where the annualized point estimate for forecasts from t+ 1 7→ t+ 1 +k

is equal to the point estimate obtained from t 7→ t+ k up to one significant digit. We calculate the

staggered forecasts for each of the portfolio returns we analyze and find no significant discrepancies.

The patterns of predictability extend to the full sample of available U.S. equity data, beginning

in 1926 when the NYSE emerged as a dominant national exchange, among other reasons.12. The

term structure of momentum is convex and increasing beyond the 1-2 year horizon. Value is concave

and decreasing after the 1-year horizon, both as in the primary sample. The long-end of the value

term structure decreases more slowly and from a slightly lower rate of predictability, maximized at

an out of sample R2 of 11.2%.

Table 6: Average and standard deviations of estimated conditional means for the Market. Annual-
ized returns.

Variable Standard Deviation Unconditional Mean Forecast Sharpe Ratio

Conditional Means 9.924 7.084 0.714
9.742 7.084 0.727
9.410 7.084 0.753
9.064 7.084 0.782

5.3 Carhart Model Factor Replication

The timing portfolio returns for a particular factor are not identical to the sequence of conditional

forecasts obtained for that factor. This is because the conditional forecasts are constructed by

exploiting information in the errors from past nominal forecasts that are not replicable in the space

of the factors’ test assets. Nonetheless, a projection of the conditional forecasts onto the test asset

space improves the efficiency properties of the factor replicating portfolios.

The timing portfolio for HML returns can be split into two components. The raw HML Sharpe

ratio over the full sample is 0.177, while the first HML timing component achieves 0.230 and the

second component achieves 0.283. Results are stated in Table 5. The hybrid timing component

replicates HML returns but with lower volatility, producing a Sharpe ratio of 0.301 over the full

sample. HML does better prior to the 2007 financial crisis with a Sharpe ratio of 0.190. The timing

portfolio components pre-crisis generate Sharpe ratios of 0.259 and 0.223 for the penultimate and

trailing components, respectively. The overall timing portfolio does less well excluding the crisis,

but we still detect a significant improvement. The trailing component - both the trailing factor and

the weight of the HML replication on that factor - drives performance of the HML timing portfolio

12Brown, Mulherin, and Weidenmier (2006) discuss the pre-1926 history of the stock exchange industry in the U.S.
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during the financial crises.

When several components are predictable, a simple diversification argument suggests the hybrid

returns will be more efficient than either of the individual component replicating returns, which

is part of what we see here. This intuition is delicate: theory tells us that investors are willing

to sacrifice some mean-variance efficiency for inter-temporal hedging opportunities represented by

the HML factor. We should expect to see a diversification benefit from combining the components

within the HML factor, as we do, but it is not obvious what to expect combining components from

different factors with the market.

The momentum factor timing portfolio is concentrated on a single expected return factor. The

Sharpe ratio rises from 28% to 32.8%. The Sharpe ratios, means and volatility are significantly

estimated. Moreover, we reject the null hypothesis that the difference in the Sharpe ratios is zero.

Results are reported in Table 5.

The SMB timing portfolio represents an improvement in mean-variance efficiency of 63%. Statis-

tics are reported in Table 5, along with the standard factor replicating portfolio statistics for ref-

erence. Interestingly, the incremental gains in efficiency do not arise from more precise estimates

of the conditional price of risk for the size factor. This and related findings are the subject of the

proceeding section.

5.4 Gains in Dimension

Using the full BTM 25 xsection, we compare the dimension of the representation of 97.5% variation

threshold we find the inclusion of the nominal forecasts increases the dimension between one and

three degrees. Heuristically, the dimensions can be thought of as state variables.

The fact that forecasts improve for horizons inside of four years as we bring the window Tm

down from Tm = 15 to Tm = 12 and Tm = 8 is not surprising if the filtering procedure is working

as expected. These choices represent an increase in the mixing time holding a threshold fixed. As

a result, higher frequency fluctuations are emphasized at the expense of lower frequency transitory

variation.

5.5 Summary of Empirical Method

To summarize, pick a threshold ε0 > 0 for the mixing times Nt(ε0) and target N0(ε0). This choice

implies some sample window size Tm such that the mixing time evaluated on the window τm(t) is

near N0(ε0). Within each sample window τm(t), nominal forecasts are fitted for each of the risk
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Table 7: Sharpe Ratio Comparisons
Value, Momentum, and Size Timing Portfolios

Top: Full sample and pre- 2007 financial crisis Sharpe ratios and t- statistics for HML and HML timing
portfolio by component. Statistics correspond to pre-crisis estimates. Mid: Sharpe ratios for momentum,
the first two components of the expected return factors weighted corresponding to their contribution to
momentum, and the momentum timing strategy. Lower panel: size, size timing portfolio and market
Sharpe ratios. Test assets are the Fama-French FF25 Size/BTM plus 10 momentum portfolios. Factor
data are the FF3 plus Momentum factor returns. Data are quarterly from 1927 Q1 to 2015 Q3.

Strategy Value Penultimate Trailing Value Timing

Monthly SR
Full Sample 0.177 0.230 0.283 0.301
Pre-2007 0.190 0.259 0.223 0.243

(3.403) (2.920) (3.191)

Strategy Momentum Momen. Timing

Monthly SR
Full Sample 0.2801 0.3283 0.3009 0.3284

(4.055)

Strategy Size Size Timing

Monthly SR
Full Sample 0.1352 0.2138

(2.941)
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Figure 5: Orthogonal Dimensions Count 85%− 97.5% -thresholds
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(a) The time series of the number of orthogonal dimensions needed to explain each threshold percentage
of the variation from that date on a rolling historical 15-year window. Quarterly Fama -French 3-factor
and Carhart model returns data are from 1967 Q1 to 2016 Q4. NBER recessions are in blue.
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factor returns and combined with the contemporaneous realized returns to create an augmented

panel. Calculate a singular value decomposition (SVD) of the series in this panel and extract the

significant dimensions. Transform the diagonal elements using Λ 7→ C(Tm)(1− Λ)−1. Forecast the

component dimensions t → t + 1 by linear autoregressions (do not include the first component in

general). Regress the target portfolio returns on the components in window [Tm − t, t] and keep

the coefficient estimates. The latent component forecasts give forecasts for the target portfolios by

weighting the component forecasts with the portfolio’s coefficient estimates.

The specialized case where the best predictor is the spectral gap follows from equilibrium asset

pricing theory, as described in the modeling sections. However, statistics contained in the trailing

solutions to the eigenvalue problems are myriad. The above described predictive routine applies

generally, as long as a first-order transition representation is justified.

6 Conclusion

We extract predictable components from priced risk factors and show these components can be used

to improve allocation efficiency in real time. Latent, transitory components of factor risk prices con-

tain valuable information about near and medium term evolution of the state of the economy. Novel

evidence connecting time-series predictability and time-varying risk prices for common factors in

equity markets is provided.

The spectral gap measures the fraction of volatility concentrated on long-run shocks, varies

through time and predicts market returns. We use these factors to predict the market as well as

several portfolios including value, size and momentum. For the market and value, we find out-

of-sample R2’s of 10.8% and 14.7% respectively, for annual returns. For size, annual returns are

13.7% predictable out of sample. Momentum predictability is low at the short end, but reaches

nearly 30% at the three year horizon. More generally, we document a heterogeneous term structure

of predictability across types of portfolios. Most strikingly, the value premium predictability is

concave and most predictable at the one-year horizon, while momentum predictability is convex.

This finding contributes an interesting wrinkle to the value and momentum “puzzle” regarding the

high average returns but significant negative correlations of these series.

The discrepancy between the variation of the permanent and transitory components is a well

studied object that emerges in a range of contexts in nature. Because the general representation

for the concentration of volatility on the leading factor is measured by (one-minus) the difference

between the first two eigenvalues of the Laplacian of a dynamical system, it is called the spectral

gap. In asset markets, the spectral gap and related statistics are found by specializing a known
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decomposition of Markov transition dynamics. This decomposition identifies a factor structure of

expected returns from the permanent and transitory fluctuations. The common sources of transi-

tory fluctuations comprise the expected return factors. Naturally, the expected return factors are

also the common sources of time-series predictability.

We begin with priced risk factors so we know the benchmark portfolios are priced, and find that

incremental efficiency gains associated with identifying the expected return factors are also priced.

Incremental gains from timing HML are compensation for exposure to business - cycle news, while

timing Momentum compensates for permanent wealth shocks. Timing gains are not priced for size.

We isolate the component of market returns that are priced but find a residual process with signif-

icant variation that has no cross-sectional pricing power.

Our findings suggest investors are able to allocate capital with more precision using past re-

turns data alone than previously indicated. This distinction is most relevant in economies where

we distinguish between revisions in state variables given a known, fixed model and economies where

dynamical features require shocks to the model. For example, it is not only the case that the evo-

lution of technology is uncertain and risky, but also the case that the way markets equilibrate is

uncertain, particularly in the context of the given technological uncertainty. Because this problem

immediately becomes high dimensional, the most natural device for managing it is high dimensional

random variables in the form of random local transition dynamics. This modeling choice is simpli-

fied in practice because the distribution of the eigenvalues (and eigenfunctions) of the system are

well studied and tractably summarize high dimensional information.

Our characterization of the latent components has implications for economic modeling. Rational

agents making allocations optimally in an asset pricing model must be endowed with the spectral

data. In models where data are initialized at a deterministic invariant distribution this distinction

is immaterial. In more general models, incorporation of spectral data into the decision makers’

information set can impact model implications.

The predictable component in market returns is related to slow moving cash-flow yields, plac-

ing restrictions on parametrizations of stochastic discount factor models. Two natural theoretical

benchmarks are i.) persistent level shocks to growth under representative Epstein Zin preferences,

and ii.) i.i.d. growth (i.e., output is a random walk) under representative ambiguity aversion.

Hansen (2011) points out that ambiguity averse investors ex-post look like rational expectations

investors if the equilibrium data generating process is the worst-case model. For plausibly indistin-

guishable models, the worst case model is the long-run risk model. The findings and methods in

this paper suggest an opportunity to distinguish these stories in finite samples by looking directly at

dynamics in the spectral data (after making some assumptions regarding the underlying equilibrium

and its data generator). Given the factor structure of time-varying discount rates, surprise revisions
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to persistent premia are priced cross-sectionally (ex-post in finite samples) if the long run risk model

is the true model, but not necessarily when the representative investor is ambiguity averse.

Our analysis revealed the importance of the countercyclical concentration of return volatility on

permanent shocks - both as an economic concept and a convenient modeling object. This suggests

a similar analysis can be fruitful in a variety of other asset markets. Because these analyses are cast

in terms of objects that are common to many asset pricing models, new empirical evidence implies

tractable restrictions to the set of plausible parametrizations of stochastic discount factor models.
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Technical Appendices

1. Definitions and Existence of Pµ, µ0 given (M, X) 7.1

2. Decomposition Results and Corollaries; Convergence 7.2

3. Identification from Covariance Matrix of Returns 7.4-7.5

7 Appendix: Markov Asset Pricing Details

7.1 Technical Environment

Invariant Measure on X The kernel of an homogeneous Markov chain is a time-invariant func-

tionm(x[i], x[j]) : X×2X −→ [0, 1] containing the transition probabilities forXt, Pr(Xt = x[j]|Xt−1 =

x[i]) =: m(x[i], x[j]) for every ordered pair of states. Let S = #X; then
∑S

k=1m(x[i], x[k]) = 1 for

38



each i. The transition matrix induced by the kernel has entries (M)i,j = m(x[i], x[j]).

We assume the chain is irreducible, i.e., m(x[k], x[j]) > 0 for every 0 ≤ k, j ≤ S. We also assume

M is aperiodic: gcd{n : m(x[j], x[j])n > 0} = 1 for each x[j] ∈ X (“gcd” finds the greatest common

divisor). In finite states irreducibility and aperiodicity reduce to irreducibility for every n ∈ N,

m(x[k], x[j])n > 0, where j = k captures the aperiodicity condition (cf., Hairer, 2006, E3.9 p.14).

Define the space of probability measures over X

Fµ :=

q =


q1
q2
...

qS

 :
S∑
i=1

qi = 1, qi ∈ [0, 1]

 ⊂ RS

Let {ei , 1 ≤ i ≤ S} be standard basis vectors for RS.

Proposition 7.1 There is a unique invariant measure µ0 ∈ Fµ satisfying µ′0 = µ′0MN for every

N ≥ 1 and ei · µ0 > 0 for every 0 ≤ i ≤ S.

Proof Levin, Peres and Wilmer (2008), p. 12 Proposition 1.14

�

Consider a sequence of elements hn ∈ Fµ generated by M′ and denote the k’th outcome hk. It is

clear that when h0 = µ0, (M′)K h0 =: hK = µ0 for every K ∈ N.

The Path Space Fix a probability space (Ω,F ,P). Define the product space Z := {X}N =

X ×X × ... =
∏

n∈NXn. Z contains all infinite sequences of elements of X. A path zs s ∈ N is an

arithmetic function z : N→ R. A sample path is a finite sequence of elements in X, zs≤N ∈ {X}N
on the truncated domain {0, 1, 2, ..., N}. Events ω ∈ Ω realize as paths ω 7→ Z, which we occasion-

ally emphasize by writing {z}(ω) : Ω −→ Z ⊂ RSN.

We use the discrete σ- field for X, written 2X . A sequence of refinements to (Ω,�) =: F0, FN ⊂
FN+1, is generated by the sample-path events {ω : {z}N(ω) ∈ σ({X}N)} ∈ FN for every N . Each

F0 ⊂ Fn ⊂ F for n <∞. We write σ({X}N) = (2X)N for finite N .

Lemma 7.2 σ(
∏

n∈NXn) := σ(XN) = σ(X)N

Proof The countable product of finite sets, 2X , in this case given by (2X)N = σ(X)N, is count-

able. Hence, using Theorem 4.44, Aliprantis and Border (2006), p.149, for countable σ- fields,

σ(
∏

n∈NXn) =
∏

n∈N σn(X).

�

In words, the σ -field generated by the countable product space is equivalent to the countable prod-

uct of the σ -fields generated by the state space X (which is not true in general). The implication

is that any event in the sequence space can be written as the countable product of elements in 2X ,
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or equivalently, some countable product of elements of X.

Denote the finite-dimensional distributions of the Markov chain Pµ,N(b), b ∈ (2X)N for each initial

distribution over X, µ(x). The Dirac mass δx on points in X is a particular initial distribution, in

which case we write Px,·. The probability of a particular sample path (2X)N 3 zN : x0  xN is

written

h0({zN}) = µ(x0)m(x0, x1)m(x1, x2)...m(xN−1, xN)

for initial distribution µ.

The probability of any event bN ∈ (2X)N can be written as the sum of probabilities of paths {zN}
where it is true, Pµ,N(bN) =

∑
{zN}∈bN h0({zN}), which themselves can be enumerated. To track the

paths where bN is true, each ordered configuration j in the set of configurations J(bN) is written as

a path index, x1(j), x2(j), ..., xN(j), where the notation is shorthand for xt(j) = x
k(j)
t . The set J(bN)

is finite for N < ∞, and at most countable for N = ∞. The probability of any sample event is a

sum of finite products of the kernel

Pµ,N(bN) = µ(x)
∑

j∈J(bN )

N∏
n(j)=1

m(xn(j)−1, xn(j))

The preceding argument ensures the sample distributions are consistent,

Pµ,N+1(b1, b2, ..., bN , X) = µ(x)

 ∑
j∈J(b)

N∏
n(j)=1

m(xn(j)−1, xn(j))

 S∑
i=1

m(xN , x
[i]
N+1)

= Pµ,N(b1, b2, ..., bN) (7.1a)

for bi ∈ σ({X}i), every finite N and for b := (b1, b2, ..., bN) ∈ (2X) × (2X)2 × ... × (2X)N . This

definition of consistency is standard (cf. Durrett (2010, p. 366)). The product measure of the chain

is given by the pushforward,

Pµ(b) := P ◦ {z}−1(b) = P(ω : {z}(ω) ∈ b)

for every initial distribution µ on X.

Proposition 7.3 The product measure Pµ exists and is uniquely characterized by the finite-dimensional

distributions.

Proof By application of the Kolmogorov extension theorem, letting N → ∞ in 7.1a (Durrett

(2010), p. 366, Theorem A.3.1)

�
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Definition: Define the tail σ -field T :=
⋂
n≥1{σ(

⋃
m≥nFm)}. An ergodic set{

B ⊂ (2X)N : {ω : {z}(ω) ∈ B} ⊂ T

}
is a subset of a state space that has Px(b) := P ◦ {z}−1(b) ∈ {0, 1} for every b ∈ B and each initial

x ∈ X. A Markov process is ergodic if its state space is an ergodic set.

Corollary 7.4 An irreducible aperiodioc finite-state Markov chain is ergodic

Proof Tuominen and Tweedie (1994), pp. 779-780, Theorem 2.3.

�

7.2 Decomposition and Wold Representation

Remark: A reversible Markov operator admits a positive real point spectral decomposition. Im-

portant departures from reversibility are of economic interest, so we avoid the assumption of re-

versibility. See Hansen and Scheinkman (1995) for an early discussion of irreversible Markov models

in asset pricing.

Definition: The dual of F (X) written F (X∗) is the space of linear functionals ηf on F (X), ηf :

F (X) −→ R.

Proposition 7.5 (Decomposition)

I.

The image of X∗ underM′ is the direct sum of an invariant subspace I0 = I (µ0) and its orthogonal

complement I ⊥
0 ,

R(M′) = I0

⊕
I ⊥

0

Moreover, for any integer k ≥ 0, the image space R([M′]k) admits a decomposition into I0 and a

space that depends on k

R([M′]k) = I0

⊕
(I ⊥

0 )k

In particular, for M′
γ : Span(M′

γ) = I ⊥
0 ⊂ R(M′) and 1 ≤ k ∈ N,

(I ⊥
0 )k = Span

(
[M′

γ ]k
)

II.

The columns of (M′
γ)k, k ∈ N converge to the origin in the operator norm topology

((M′
γ)k),j −→k−→∞

0
...

0


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Each column (M′) ,j of M′ converges

(M′)k,j −→ µ0

in total variation to a distribution µ0 that is independent of j.

We first state a lemma we will need. A general proof is provided in section 7.3.2.

Lemma 7.6 Recall the dual space X∗ contains the linear functionals η on the range of X under

M. Then,

• We can identify X∗ with the space of probability measures Fµ(X) over X, Fµ(X) ≡ X∗

• The adjoint M′ is a continuous automorphism on Fν (X ×X). In particular, each row of M′

takes Fµ(X) −→ Fµ(X)

Remark: In the matrix case, this point is easy to illustrate. Consider a stochastic matrix S and

a probability distribution ν on RN , with N equal to the column count of S. Then for 1N×1 =: 1,

S1 = 1 and ν ′1 = 1. Consider ν̂ = S ′ν. Then

ν̂ ′1 = (S ′ν)′1 = ν ′S1 = ν ′1 = 1

so the rows of S ′ take probability measures to probability measures.

Proof of part I. By the Perron-Frobenius theorem, M has largest eigenvalue λ0 = 1 with corre-

sponding left and right eigenvectors µ′0 and ι = 1S×1, respectively.

Eigenvectors exhibit a scale symmetry Mι = ι ⇔ cMι = cι, 0 6= c ∈ R, and equivalently

c∗µ′0 = c∗µ′0M for any 0 6= c∗ ∈ R. Without loss of generality, we pick the the unitary scale

normalization c∗ = c−1 so that ι′µ0 = 1 so µ0 is a probability distribution. Because the stochastic

matrix restricts c ≡ 1, this choice of scale pins down the absolute scale c∗ = 1.

Write the algebraic multiplicity of eigenvalue j as χ({j}), and the geometric multiplicity g({j}).
Denoting the largest eigenvalue j = 0, another appeal to the Perron-Frobenius theorem gives

χ({0}) = g({0}) = 1. We can now claim the following.

Lemma 7.7 µ0ι
′ is a rank-one projection.

Proof of lemma 7.7 The linear operation µ0ι
′ is idempotent

µ0ι
′(µ0ι

′) = µ0(ι
′µ0)ι

′ = µ0ι
′
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which immediately implies that I − µ0ι
′ is orthogonal to µ0ι

′,

(I − µ0ι
′)µ0ι

′ = µ0ι
′ − µ0ι

′ = 0

so µ0ι
′ and I − µ0ι

′ are projections. That g({0}) = 1 implies that the subspace

E0 := {µ̂ : (M′ − λ0I)µ̂ = 0}

has dimension one, hence rank(µ0ι
′) = 1 and µ0ι

′ is a rank-one projection.

�

To prove part I. of proposition (7.1), note that if rank(M′) = 1, the result is trivial with I ⊥
0 empty.

Suppose rank(M′) > 1. Put

M′
γ =M′ − µ0ι

′

Denote Span(µ0ι
′) =: I0. We intend to characterize I ⊥

0 ⊂ R(M′) in terms of M′
γ .

We can see that

M′
γµ0ι

′ = (M′ − µ0ι
′)µ0ι

′ =M′(IS − µ0ι
′)µ0ι

′ = 0 (6.a)

The second equality has used the right-eigenvector of the adjointM′µ0 = µ0, and the final equality

follows given µ0ι
′ is a rank-one projection.

We verify that, in addition,

µ0ι
′M′

γ = (Mγιµ
′
0)
′ = ((M− ιµ′0)ιµ′0)′ = (M(IS − ιµ′0)ιµ′0)′ = 0 (6.b)

using the right-eigenvector ι =Mι, and the facts that rank(µ0ι
′) = rank(ιµ′0) and µ0ι

′ is a rank-one

projection.

The image ofM′ takes the form R(M′) = I0

⊕
Span(M′

γ), because in (6.a)-(6.b), we have shown

I ⊥
0 = Span(M′

γ).

Now define M′
γ,k = (M′)k − µ0ι

′. By definition of the invariant measure µ0, we have the right-

eigenvector arguments for integer powers k,

(M′)kµ0 = µ0 (6.c)

(M)kι = ι

Combining the first identity in (6.c) with the arguments (6.a), we obtain

M′
γ,kµ0ι

′ = [(M′)k − µ0ι
′]µ0ι

′ = (M′)k(IS − µ0ι
′)µ0ι

′ = 0

Repeating the arguments in (6.b) using the second identity in (6.c), and the and the elementary
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fact ((M)k)′ = (M′)k,

µ0ι
′M′

γ,k = ([(M′)k − µ0ι
′]′ιµ′0)

′ = (Mk(IS − ιµ′0)ιµ′0)′ = 0

Finally, for 0 < k ∈ N, it is clear that

(M′
γ)k = (M′)k(IS − µ0ι

′)k

= (M′)k(IS − µ0ι
′)

= (M′)k − µ0ι
′

=M′
γ,k

We conclude that for any integer k ≥ 1, (I ⊥
0 )k = Span(M′

γ,k) with M′
γ,k = (M′

γ)k and M′
γ =

M′ − µ0ι
′. In particular, R((M′)k) = I0

⊕
Span((M′

γ)k).

�

Before proving part II., we state some useful corollaries.

Corollary 7.8 µ0ι
′ and M′

γ commute.

Corollary 7.9 (Chapman-Kolmogorov) The operators {(M′)n, n ∈ Z+} form an abelian semi-

group under (matrix) multiplication. Every k- decomposition is contained in the semigroup. An

identical statement is true for the operators {(M)n, n ∈ Z+}.

Proof Pick finite positive integers n1, n2 and denote N = n1 + n2. Then,

(M′)n1(M′)n2 = (µ0ι
′ +M′

γ)N

=
N∑
n=0

(
N

n

)
(µ0ι

′)N−n(M′
γ)n = µ0ι

′ + (M′
γ)N

The first line is trivial, and shows the semigroup property (M′)n1(M′)n2 = (M′)N and hence

commutativity (M′)N = (M′)n2(M′)n1 . The second line applies the results from proposition (7.1)

finitely many times to extend the semigroup property to the decomposition.

�

Corollary 7.10 (γ- Semigroup) The operators {(M′
γ)n, n ∈ Z+} form an abelian semigroup

under matrix multiplication.

Corollary 7.11 (Wold Time Series Representation) Under the assumptions needed to decom-

pose (M′)k = µ0ι
′ + (M′

γ)k, the classic Wold representation is justified.

Proof First, recall each RS 3 1(xt,·) is a degenerate probability distribution with mass on the

coordinate of the realized element xt,· ∈ X. Recall the definitions Rn,t+1 = rn · Xt+1, and hence

xt+1 = ι′M′1(xt,·) + ut+1. Equivalently,

1(xt) =M′1(xt−1) + 1(ut)
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If M′ ≡ µ0ι
′, the decomposition is rn ·Xt+1 = rn · µ0 + ut+1 for every t. Consider Rank(M′) > 1.

Then,

rn ·Xt+1 = rn · (M′1(xt) + 1(ut+1))

= rn ·
(
[µ0ι

′ +M′
γ ]1(xt) + 1(ut+1)

)
= rn · µ0 + rn ·

(
M′

γ1(xt) + 1(ut+1)
)

= rn · µ0 + rn ·
(
M′

γ (M′1(xt−1) + 1(ut)) + 1(ut+1)
)

= rn · µ0 + rn ·
(
M′

γ([µ0ι
′ +M′

γ ]1(xt−1) + 1(ut)) + 1(ut+1)
)

= rn · µ0 + rn ·
(
M′

γ(M′
γ1(xt−1) + 1(ut)) + 1(ut+1)

)
= rn · µ0 + rn ·

(
M′

γ(M′
γ (M′1(xt−2) + 1(ut−1)) + 1(ut)) + 1(ut+1)

)
...

= rn · µ0 + rn ·
∞∑
s=0

(M′
γ)s1(ut+1−s)

�

Remark: The Wold representation expresses the path {z}(ω) in terms of its martingale-difference

(i.e., white-noise) basis. A finite sample version is obtained as a special case. For generalized Wold

representations of isometric operators, see Severino (2014).

Remark: The µ0ι
′ shocks are permanent in the sense that µ0ι

′1(ut) = (M′)Nµ0ι
′1(ut) for every

horizon N .

Corollary 7.12 (Preservation of Probabilities) The rows ofMγ sum to zero. When Rank(M) >

1, there are nontrivial payoff vectors dn ∈ F (K) such that

|ei · M′
γdn| > 0

for some i ∈ {1, ..., S}

Proof Put 1 = 1S×1 (= ι). Recall the right eigenvector of Mι = ι, so that

1 =Mι = (ιµ′0 +Mγ)ι = ιµ′0ι+Mγι = 1 +Mγι

Clearly, Mγι = 0.

Given the invariant µ′0 = µ′0M, the matrix Mγ is identically zero when M is identically (µ0ι
′)′.

Given µ0, a necessary and sufficient condition for Rank(M) = 1 is that the rows ofM are constant

multiples of µ′0.

Take M′ such that Rank(M′) > 1, and consider dn s.t. |dn · ei| > 0 for some i ∈ {1, ..., S}. Then

M′dn = µ0ι
′dn +M′

γdn and 0 ≤ |ei · (M′ − µ0ι
′)dn| = |ei · M′

γdn| for every 1 ≤ i ≤ S. Suppose
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for a contradiction that ei · (M′ − µ0ι
′)dn = 0 for every i. In other words, M′dn = µ0ι

′dn for every

nonzero dn ∈ Fd(K). Because M′µ0 = µ0, these together imply

M′(µ0 − dn) = µ0(1− ι′dn) (1.a)

= µ0ι
′( 1
S
ι− dn)

The condition Rank(M′) > 1 ensures M′ is not identically µ0ι
′. In particular, in R(M′) =

I0

⊕
I ⊥

0 , the I ⊥
0 is nonempty. So, (1.a) implies dn = µ0 = 1

S
ι, the uniform distribution over

ZS. If µ0 is not uniform, we are done. If µ0 is uniform, then M′ι = ι, so M′ is doubly stochastic.

As a result, M′dn = µ0ι
′dn = 1

S
ιι′dn, which implies each row of M′ is identically the uniform

distribution. Hence, contrary to our assumption, Rank(M′) = 1. Thus, for some i ∈ {1, ..., S},
0 < |ei · (M′ − µ0ι

′)dn| = |ei · M′
γdn|.

�

Remark: M′
γ redistributes probability within the transition dynamics. Relative to dynamics

under µ0ι
′, M′

γ generates non-negligible distortions to asset payoffs locally in time.

It turns out these distortions are limited to risky assets.

Corollary 7.13 (State Dependent Payoffs) Every nontrivial constant payoff is in the image

space of µ0ι
′. In particular, the uniform distribution is never the range of M′

γ.

Proof Take Rank(M′) > 1 so Rank(M′
γ) ≥ 1. Put

Ker(Mγ) := {v ∈ CK(X) : Mγv = 0S×1}

Recall 1S×1 = ι and cMγι = 0 for any scalar c ∈ R. It follows that

b0 := {v ∈ CK(X) : v = c ι , 0 6= c ∈ R} ⊂ Ker(Mγ)

Now, using13

R(M′
γ) = Ker(Mγ)⊥

we conclude that b0 * R(M′
γ). In particular, b0 ⊂ I0.

�

7.3 Convergence Rates

To study convergence, we review a few definitions and known results. A handful of purely analytical defi-
nitions are relegated to section (7.6.1.).

13e.g., Luendberger, sec 6.6 pp 155, theorem 1.
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Definition: The total variation of a signed measure is

‖ η ‖TV := sup
A∈B(X)

|η(A)|

Definition: The total variation distance between two probability measures µ, ν is

d(µ, ν)TV =‖ µ− ν ‖TV = sup
b∈(2X)N

|µ(b)− ν(b)|

which itself takes values in [0, 1].

Lemma 7.14 The set of probability measures Fµ is metrized by total variation d = dTV . In particular
(Fµ, dTV ) inherits the topology induced by total variation. Now write σ(Fµ) for the Borel σ -field on Fµ
with open sets generated by the total variation distance dTV . Then (Fµ, σ(Fµ)) is a measurable space.

Proof Den Hollander (2011), p.13 II.1
�

Lemma 7.15 On countable state space, total variation distance is equivalent to

sup
b∈(2X)N

|µ(b)− ν(b)| = 1

2

∑
a∈X
|µ(a)− ν(a)|

Proof Levin, Peres and Wilmer, 2008, Proposition 4.2.
�

An immediate corollary of lemma (7.7) is that for finite X, total variation is an `1 norm∑
a∈2X

|h0(a)− µ0(a)| =
∑
a∈2X

|h0(a)− 1|µ0(a)

=‖ h0 − ι ‖`1(µ0)

under µ0, where the elementwise quotient h0 = h0/µ0 is the likelihood of h0 with respect to µ0.

Definition: The operator norm ‖ · ‖Op for operator T is

‖ T ‖Op := sup
{v∈D(T) , ‖v‖`1=1}

‖ Tv ‖`1

Lemma 7.16 For continuous linear operators T,S

‖ T′T ‖Op=‖ T ‖2Op (a.)

‖ ST ‖Op≤‖ S ‖Op‖ T ‖Op (b.)

Proof
(a.) Lax (2002), Theorem 14., section 19.7, p. 222
(b.) Lax (2002) Theorem 8., section 15.4, p. 168

�

Proof of Prop. 7.1 part II. We need only consider the nontrivial case Rank(M′) > 1. Pick an

initial probability over X given by ĥ0. Then ĥ′0,k = ĥ′0Mk, equivalently (M′)kĥ0 = ĥ0,k. Define the

likelihood h0 = ĥ/µ0 with the quotient elementwise as before. Consider first the case ĥ0 6= µ0. We

are interested in ‖ (M′)kĥ0 − µ0 ‖TV . From part I.,

(M′)kĥ0 − µ0 = µ0ι
′ĥ0 + (M′

γ)kĥ0 − µ0

= (M′
γ)kĥ0 + µ0(ι

′ĥ0 − 1)

= (M′
γ)kĥ0
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The third equality is simply ι′ĥ0 = 1 because ĥ0 is a probability measure. We can now write

2 ‖ (M′)kĥ0 − µ0 ‖2TV = 2 ‖ (M′
γ)kĥ0 ‖2TV

=‖ (M′
γ)kh0 ‖2`1(µ0)

≤‖ (M′
γ)2k1 ‖`1(µ0)‖ h20 ‖`1(µ0)

using Cauchy-Schwarz.

We showed in corollary 7.13 that the condition Mγι =M′
γι imposes that M is doubly stochastic

and therefore that µ0 is uniform µ0 = 1
S
ι and have ruled this case out. Because 1(c) := {v : v =

c1 0 6= c ∈ R} ⊂ Ker(Mγ), we conclude M′
γ1 is not trivial. Proceeding

‖ (M′
γ)2k1 ‖`1(µ0)‖ h20 ‖`1(µ0) = 2 ‖ (M′

γ)2k1 ‖`1(µ0)‖ ĥ20 ‖TV
≤ 2 ‖ (M′

γ)2k1 ‖`1(µ0) (6.1.a)

because the total variation distance is no greater than one.

The operatorM′
γ is a contraction for every k ∈ N and is therefore uniformly bounded. Because it is

also linear, by the open mapping theorem it is continuous in the operator norm topology (e.g., Lax

(2002), Theorem 12. p. 170). Now define Mγ := MγM′
γ . The operator Mγ is linear, uniformly

bounded in k and symmetric. We have

2 ‖ (M′
γ)2k1 ‖`1(µ0) ≤ 2 max

||v||=1
‖ (M′

γ)2kv ‖`1(µ0)

= 2 ‖ (M′
γ)2k ‖Op

≤ 2 ‖ M′
γ ‖2kOp

= 2 ‖ MγM′
γ ‖kOp

= 2 ‖Mγ ‖kOp
≤ 2ρ(Mγ)

k (6.1.b)

where ρ(Mγ) is the spectral radius of Mγ, and we have used submultiplicativity and part (a.) in

lemma 7.18.

When rank(M′) > 1, the symmetric positive definite operator MM′ has at least two eigenvalues.

In particular, ρ(Mγ) is bounded above by the second largest eigenvalue ofMM′. BecauseMι = ι,

the largest eigenvalue of MM′ is one. The second largest eigenvalue ζ of M is strictly less than

one. Moreover, if Mψ = ζ1/2ψ for Re(ζ1/2) < 1, then

Mψ = ιµ′0ψ +Mγψ =Mγψ = ζ1/2ψ

Consider ϕ′M = ϕ′ιµ′0 + ϕ′Mγ and ϕ′ψ = ζ1/2, so that

‖ M′ϕ ‖=‖ µ0ι
′ϕ+M′

γϕ ‖=‖ M′
γϕ ‖≤ |ζ1/2||ϕ′ψ| = ζ
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We conclude

ρ(Mγ) ≤ ζ < 1 (6.1.c)

Combining (6.1.a) - (6.1.c), we have

‖ (M′)kĥ0 − µ0 ‖TV≤ ζk/2 −→ 0 k →∞

Now, the case not yet considered is when h0 = µ0 but M is not identically ιµ′0. We are interested

in the rate at which

‖ ι′Mkf − µ′0f ‖TV−→ 0 k →∞

However, it is straightforward to bound this deviation using the same radius ρ(Mγ). Expediting

the argument using details in (6.1.a)-(6.1.c),

2 ‖ ι′Mkf − µ′0f ‖2TV = 2 ‖ (ι′Mk − µ′0)f ‖2TV
=‖ (ι′Mk − µ′0)f ‖2`1
≤‖ M2k

γ ‖`1‖ f 2 ‖`1
≤ 2 ‖ Mγ ‖2kOp
= 2 ‖Mγ ‖kOp
≤ 2ρ(Mγ)

k

Hence,

‖ ι′Mkf − µ′0f ‖TV≤ ζk/2 −→ 0 k →∞

�

Remark: A square root is natural when ζ is viewed as a singular value of M′, in which case the

corresponding eigenvalue of M′ is ζ1/2.

Remark: The generator L inherits a decomposition,

(L′h)(x) = (M′
γh)(x) + ((µ0ι

′ − I)h)(x)

from proposition 7.1. A function g is γ - harmonic when

0 = ((M′
γ − I)g)(x)

= (L′g)(x)− (µ0ι
′g)(x)

emphasizing that such a g has conditionally mean-zero transitory contributions.

Definition: ν - harmonics A function h such that (Lh)(x) = 0 for every x is harmonic with
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respect the measure νM on X ′ when in addition, 〈Lh, 1〉ν(M) = 〈h,L∗〉ν(M).

Proposition 7.17 Then,

• Every harmonic function h with respect to νM is a martingale under PνM as a function of the

initial conditions

• Every martingale is contained in the kernel of M′
γ - i.e., every νM - harmonic function is γ

-harmonic when Mγ decomposes M and ν ′M = ν ′MM

Proof Part i) is given by Doob (1959). Part ii) follows from lemma (7.8) and Ker(A) = R(A′)⊥.

�

7.4 Covariance Matrix of Returns

Define

E (φ) =‖ φ ‖2`2(µ0) − ‖ M
′φ ‖2`2(µ0)

We will make use of a variational representation of the spectral gap given by Diaconis and Strook

1991,

ζ := 1− λ1 = inf
φ

{
E (φ)

‖ φ ‖2`2(µ0)
s.t. ‖ φ ‖2`2(µ0)> 0

}

We now unpack the contents of E (φ) in terms of realized returns data.

Inner Product To compare any two sequences a and b in Z, we consider the natural inner

product 〈{za}, {zb}〉 on `2 and the normalized inner product 〈{za}, {zb}〉µ0 .

Lemma 7.18 The path space appended with either of these inner products is a Hilbert space.

Proof Strook, 2014, p. 139

�

We occasionally write φ for paths of the Markov chain. Recall EM(φ) = EM(φ, φ) := 〈φ, (I −
MM′)φ〉µ, and that for real operators B, the adjoint operator is B′, 〈Bφ, φ〉µ = 〈φ,B′φ〉µ. EM(φ)

rearranges,

EM(φ, φ) = 〈φ, (I −MM′)φ〉µ
= 〈φ, φ〉µ − 〈φ,MM′φ〉µ
= E[φφ′]− 〈M′φ,M′φ〉µ
= E[φφ′]− V(M′φ)
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Furthermore, E[φφ′] = 〈φ, φ〉µ = V(φ) + µ0µ
′
0, where V(φ) is the variance of φ, and V(M′φ) is the

variance of the conditional mean of φ.

Define the lag operator Lφt+1 = φt. Each path realization is an `2 sequence of the form φ =

{z}(ω) = (a0u0), (a1u1), (a2u2), ... =: A0W0. The uj are serially uncorrelated 〈uj, uk〉 = 0 for j 6= k.

The lag operator L maps Z → Z via the shift LA0W0 7→ A0W−1. The adjoint of the lag operator

L∗ maps L∗A0W0 7→ A1W0. Heuristically,

〈LAtWt, AtWt〉 = 〈AtWt−1, AtWt〉 = A′t+1At

〈AtWt, L
∗AtWt〉 = 〈AtWt, At+1Wt〉 = A′tAt+1

as required.

Lemma 7.19 (Lag Operator Isometry) With this construction, L : Z → Z is an isometry on

(Z, µ0, || · ||`2).

Proof We sketch a proof here for intuition. A detailed proof and discussion is given in Severino

(2014). An isometric operator leaves norms and inner products unchanged when applied symmet-

rically. Notice

〈LAtWt, LAtWt〉 = 〈AtWt−1, AtWt−1〉
= A′tAt

= 〈AtWt, AtWt〉

The same argument shifting coefficients At in place of Wt shows the adjoint L∗ is also an isometry.

�

Proposition 7.20 The form EM(φ) measures the unconditional variance of the forecast errors gen-

erated by M′.

Proof Recall

ut+1 = φt+1 −M′φt = (I −M′L)φt+1

The forecast errors are conditionally mean-zero by construction. The unconditional mean is also

zero,

E0[ut+1] = µ0ι
′φt+1 − µ0ι

′M′Lφt+1

= µ0ι
′φt+1 − µ0ι

′Lφt+1 − µ0ι
′M′

γLφt+1

= µ0ι
′(φt+1 − φt)

= 0 (7.10.a)

because the span of M′
γ is orthogonal to I0 and the lag operator is identity on I0.
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Using (7.10.a), the unconditional variance is of the form

V(u) = 〈u, u〉µ = 〈(I −M′L)φ, (I −M′L)φ〉µ
= 〈φ, (I −M′L)′(I −M′L)φ〉µ
= 〈φ, (I − IM′L− L′MI + L′MM′L)φ〉µ
= E[φφ′] + 〈M′Lφ,M′Lφ〉µ − 〈φ,M′Lφ〉µ − 〈φ, L′Mφ〉µ
= E[φφ′] + V(M′φ)− 〈φ,M′Lφ〉µ − 〈φ, L′Mφ〉µ
= E[φφ′] + V(M′φ)− 〈φ,M′Lφ〉µ − 〈M′Lφ, φ〉µ

where we have used the isometry of the lag operator L to get from the fourth to the fifth line, and

the adjoint (M′L)′ = L′M. Now

〈M′Lφ, φ〉µ = 〈M′φt, φt+1〉µ
= 〈φt+1 − ut+1, φt+1〉µ
= 〈φt+1, φt+1〉µ − 〈ut+1, φt+1〉µ

Using the Wold representation for the second term in the last equality,

〈ut+1, φt+1〉µ = 〈ut+1, µ0ι
′ +

∞∑
s=0

(Mγ)
s ut+1−s〉µ

= 〈ut+1, ut+1〉µ

so

〈M′φt, φt+1〉µ = 〈φt+1, φt+1〉µ − 〈ut+1, ut+1〉µ

Applying a symmetric argument to 〈φ,M′Lφ〉µ, we have

〈φt,M′φt+1〉µ = 〈φt+1, φt+1〉µ − 〈ut+1, ut+1〉µ

Consolidating terms gives

〈u, u〉µ = E[φφ′] + V(M′φ)− 〈φ,M′φ〉µ − 〈M′φ, φ〉µ
= E[φφ′] + V(M′φ)− 2〈φ, φ〉µ + 2〈u, u〉µ

=⇒
−〈u, u〉µ = V(M′φ)− E[φφ′]

= −EM(φ, φ)

�

Remark: Explicit time indices indicate material distinctions. For example, we have not shown

〈M′φ, φ〉 = 〈φ,M′φ〉, rather 〈M′φt, φt+1〉 = 〈φt+1,M′φt〉.
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7.4.1 Wold Representations for Second Moments

For ε > 0, each ς ∈ (0, 1 + ε] defines an operator

(Rγ(ς)φ)(x) = ς−1
∞∑
n=0

(
ς−1(Mγφ)(x)

)n
We will also consider the resolvent as a function of ς,

Rγ(ς) = ς−1
∞∑
n=0

(
ς−1Mγ

)n
Because ρ(Mγ) < 1, we have Rγ(ς) = (ςI −Mγ)

−1 for ς ∈ (ρ(Mγ), 1 + ε], and

Rγ(1)(I −Mγ) = I

A proof for the case of Neumann series is given in Lax ((2010), Theorem 3 p. 195).

7.5 Identification of Spectral Gap from Realized Returns

Proposition 7.21 (Identification) Consider the Markov environment above with rank(M) > 1.

The singular value decomposition of a panel of realized returns can be expressed in terms of the

Markov transition

ΛPCA + V′D1−λΣV

where + reads “unitarily equivalent” and where

Rγ(1) = UD1−λU
′

(D1−λ)i,j =

{
1

1−λj i = j

0 i 6= j

Proof Recall that for any integer k, µ0ι
′Mk

γ = 0, and for any s > 0, 〈ut, ut−s〉 = 0. In particular,
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we have

V(Rt) =
〈
Rt −R,Rt −R

〉
= 〈

∞∑
s=0

(M′
γ)sut−s,

∞∑
s=0

(M′
γ)sut−s〉

= 〈ut, ut〉+ 〈
∞∑
s=1

(M′
γ)sut−s,

∞∑
s=1

(M′
γ)sut−s〉

= 〈ut, ut〉+
〈
M′

γut−1,M′
γut−1

〉
+ 〈

∞∑
s=2

(M′
γ)sut−s,

∞∑
s=2

(M′
γ)sut−s〉

Now, 〈
M′

γut−1,M′
γut−1

〉
=
〈
M′

γLut,M′
γLut

〉
=
〈
M′

γut,M′
γut
〉

=
〈
MγM′

γut, ut
〉

= 〈Mγut, ut〉

using the lag operator isometry and the adjoint operation. Then,

V(Rt) = 〈ut, ut〉+ 〈Mγut, ut〉+
〈
(M′

γ)2ut−2, (M′
γ)2ut−2

〉
+ ...

Similarly for the second order case,〈
(M′

γ)2ut−2, (M′
γ)2ut−2

〉
=
〈
(M′

γ)2LLut, (M′
γ)2LLut

〉
=
〈
(M′

γ)2Lut, (M′
γ)2Lut

〉
=
〈
(M′

γ)2ut, (M′
γ)2ut

〉
=
〈
Mγ(M′

γ)2ut,M′
γut
〉

=
〈
(Mγ)2(M′

γ)2ut, ut
〉

=
〈
(Mγ)

2ut, ut
〉

using associativity. Continuing,

V(Rt) = 〈ut, ut〉+ 〈Mγut, ut〉+
〈
(Mγ)

2ut, ut
〉

+
〈
(M′

γ)3ut−3, (M′
γ)3ut−3

〉
+ ...

...

= lim
N→∞

N∑
s=0

〈(Mγ)
sut, ut〉

This sum is absolutely convergent because the eigenvalues are bounded inside the unit circle uni-

formly in parameter k ∈ N.

Write
∑∞

n=0mn =
∫
Rm(n)ν(dn) for the counting measure ν̂(n) = nν(n). Now invoke Fubini’s
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theorem to change the order of integration. This justifies applying bilinearity of the inner product

countably many times

∞∑
s=0

〈(Mγ)
sut, ut〉 =

〈
∞∑
s=0

(Mγ)
sut, ut

〉
= 〈Rγ(1)ut, ut〉

Because the series is convergent, the operator Rγ(1) can be written concisely in Mγ:

Rγ(1) = (I −Mγ)
−1

We require the following

Lemma 7.22 The operator Mγ admits a (weak) positive real point spectral decomposition Mγ =

UΛγU
′ such that every eigenvalue is bounded on unit interval 1 > m ≥ (Λγ)j,j ≥ 0. Furthermore,

at least one eigenvalue is strictly positive.

Proof The operator M′
γ =M′ − µ0ι

′ has a zero eigenvalue. Moreover, any nonzero eigenvalue φj
has real part strictly bounded inside of the unit interval [−1 + ε−, 1 − ε+], for 1 > ε > 0, by the

Perron-Frobenius theorem. Hence by orthogonality any eigenvalue of Mγ is bounded inside the

same interval. To see this, note that λj, φj such that Mφj = λj and j 6= 0,

Mφj = ιµ′0φj +Mγφj =Mγφj = λjφj

because the dual bases of different eigenspaces are orthogonal by construction (for every j 6= i,

φ′iφj = 0; in this case, the long run expected value of φj is zero, written µ′0φj = 0). Because

rank(M) > 1, there is at least one nonzero eigenvalue of M′
γ , λ∗j , with eigenvectors ψj,

M′
γψj = λ∗jψj λ∗j ∈ C (8.j)

Clearly, any ψj satisfying 8.j gives

[M′
γψj]

′M′
γψj = ψ′jMγM′

γψj

= λ∗2j ψ
′
jψj > 0

We conclude that 0 < λ∗2j < 1. Recall Mγ :=MγM′
γ and write the above condition

〈ψ′j, ψ′jM′〉 = λ∗2j 〈ψ′j, ψ′j〉

That it is an eigenvalue of Mγ follows from

λ∗2j =
‖ M′

γψj ‖
‖ ψj ‖

≥
‖ M′

γψ ‖
‖ ψ ‖

for any ψ 6= ψj since ψj is an eigenvalue of M′
γ .

�
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Now, using Rγ(1)(I − UΛγU
′) = I, and the unitary identity U′ = U−1, we have

(I −Mγ)
−1 = (I − UΛγU

′)
−1

= (UU′ − UΛγU
′)
−1

=
(
U[U′ − ΛγU

′]
)−1

=
(
U[I − Λγ ]U′

)−1
= U′

[
I − Λγ

]−1
U

where we have used U′ = U−1 in the second and fifth equality and that I − Λγ is diagonal. Define

(D1−λ)i,j :=

{
1

1−λj i = j

0 i 6= j

We have shown

(I −Mγ)
−1 = U′D1−λU

Returning to the resolvent decomposition,

V(φt) = 〈UD1−λU
′u, u〉

= 〈D1/2
1−λU

′u,D
1/2
1−λU

′u〉

= 〈D1/2
1−λu,D

1/2
1−λu〉

= D
1/2
1−λ〈u, u〉D

1/2
1−λ

= D1−λΣ

Write R · µ0 = R0 and consider the SVD of the sample fluctuations of realized returns around their

mean: Rt−T,t −RT = VD1/2W′. The covariance matrix is simply

V(Rt) := 〈Rt, Rt〉 −R0R0

= VD1/2W′WD1/2V′

= VDV′

Of course, D = ΛPCA. Hence,

VΛPCAV
′ = D1−λCC

′

〈VΛ
1/2
PCA,VΛ

1/2
PCA〉 = 〈UD1/2

1−λu,UD
1/2
1−λu〉

�
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Remark: From the proof of proposition (7.2.1), we can see the unitarily equivalent bundles spec-

ified by + can be summarized by the equalities

VΛPCAV
′ = D1−λUΣU′

= D
1/2
1−λΣD

1/2
1−λ

= U′D1−λUΣ

7.5.1 Martingale Representation

Markov dynamics define a serially uncorrelated mean-zero process ut+1 = r(xt+1)− (Mr)(xt) with

boundary u0 = 0. We construct a martingale u∗t recursively u∗t = ut+u
∗
t−1 with boundary u∗0 = r(x0).

Using the definition of ut+1 and the operator (Lr)(xt) = (Mr)(xt)− r(xt), the martingale takes the

form

u∗t+1 = r(xt+1)−
t∑

s=0

(Lr)(xt−s) (3.2a)

The generator L =M− I takes martingales ofM to its kernel. BecauseM has eigenvalues in the

closed unit circle, −L has eigenvalues in [0, 1). For values near zero and Mψj = λj(x)ψj,

Lψj = −e−iλj(x)ψj

is a good first-order approximation. Hence, the spectral gap is equivalently the smallest nonzero

eigenvalue of the (negative) generator.

Write ζ̂−1t := ζ−1t γγxt−1. From the construction of the martingale u∗t+1 in 3.2a, we see that the

cumulative process associated with the changes in expected returns is, unsurprisingly, the expected

return itself. Using 3.2a with ∆Êt−1,1 ≡ 0, we can express the expected return process

Et[Rt+1] = ζ̂−1t (xt)−
t−1∑
n=0

(Lζ̂−1t−1−n)(xt−1−n) (3.2b)

in terms of first differences of the inverse spectral gap.

7.5.2 Covariance Matrix with Non-Centered SVD

The noncentered SVD puts φ = AΛ1B
′. Then,

E[φ− Eφ][φ− Eφ]′ = E
[
AΛ1B

′(I − 1
T

11′)
(
AΛ1B

′(I − 1
T

11′)
)′]

= E[AΛ1B
′I1I

′
1BΛA′]

57



The matrix I1 := I − 1
T

11′ is symmetric, hence I1I
′
1 = (I1)

2. Element-wise,

(I1)
2
i,i = (1− T−1)2 + T−2(T − 1) = 1− T−1 = (I1)i,i, and,

(I1)
2
i,j = −2(1− T−1)T−1 + T−2(T − 2) = −T−1 = (I1)i,j

so I1 is a projection. Hence ET [AΛ1B
′I1I

′
1BΛA′] = T−1AΛ1B

′I [T ]BΛA′ where I [T ] = TIT×T −
1T1′T = TI1.

Under mild restrictions,

T−1AΛ1B
′I [T ]BΛA′ −→T→∞ V(φ)

where V(φ) is the population covariance of φ.

7.6 Changes of Measure using Deviations from µ0

The process has long run mean µ0. We calculate the empirical distribution ĥt = 1
T
ht where ht =∑T

s=1 δx(s) which is different than µ0 in almost every finite sample. Precisely, for aε := µ0 + ε,

P(ht ≥ Taε) ≤ e−kTaεE[ek ht ]

= e−TI(aε)−o(T
−1)

where I(aε) = supk{kaε − log(E[ek ht ])}.

Remark: In the standard normal case, optimality puts k = ε. Hence I(x) = 1
2
x2 and I(0) =

I ′(0) = 0. I(0) = 0 expresses the law of large numbers, while I ′(0) = 0 captures the inflection point

of I(x), which locally measures the rate at which the large-time outcomes can deviate from their

limiting behavior. I(x) is dubbed the rate function; see Veradhan (1979, 2008).

7.7 Proofs of Mathematical Lemmas (Online Appendix)

Proof of Lemma 7.2 For each f ∈ F (X), the Riesz representation theorem identifies the linear func-
tional

η(f) =

∫
fηf = 〈f, ηf 〉

as the inner product of f against a unique function ηf ∈ F (X). We can take η(f) = (Mf)(1) for consis-
tency, but all linear functionals take the form needed.

First consider the simple functions f =
∑

i 1Ei , for disjoint Ei with
∨
iEi = (2X)N. Using the countable

additivity of the Stieltjes integral, clearly

(η(f))(Ei) =

∫
1Eiηf = Pη(f)(Ei)
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is a countably additive set function. Because the path space is countable, the integral is finite on every sub-
set of (2X)N, which ensures the set function is inner and outer regular (see Tao 2010, p. 152, 1.10.12). We
conclude Pη(f)(Ei) is a Radon measure (Tao (2010), Theorem 1.10.11.). Moreover, η(f)(Z) =

∑
i P(Ei) = 1

for any disjoint partition of (2X)N so Pη(f) is a probability measure on (XN, (2X)N).

We have shown every simple function f ∈ F (1X) ⊂ F (X) corresponds to a unique ηf ∈ F (1X)∗ which
itself corresponds to a probability measure Pη(f). This correspondence is unique up to functions f1, f2 that
agree a.e. in the sense that if for every g, 〈f1−f2, g〉 = 0, then Pη(f1)(Ej) = Pη(f2)(Ej) for every measurable

Ej ⊂ (2X)N.

Recall the definition of the adjoint map M′ given M,

〈Mf, g〉 = 〈f,M′g〉

with g = ηMf ∈ F (X ′)∗ and henceM′g =M′ηMf ∈ F (X)∗. The adjoint exists by the Riesz representation
theorem (Tao (2010), p. 54, 1.4.15) and (if necessary) extends to all of X∗ by the Hahn-Banach theorem.
In particular, the adjoint map can be constructed directly for each ηf ∈ F (X ′)∗ via the composition

M′ηf = ηf ◦M

(Rudin 1991, p. 98 Theorem 4.10). We conclude that for simple functions f ∈ F (1X), the adjoint operator
M′ maps the dual of the range of M to the dual of the range of M−1M, (= I on Hilbert space), and we
can identify each element of F (1′X)∗ with a probability measure over R(M).

The collection of simple functions F (1X) is dense in F (X). By the Stone-Weierstrass theorem, F (X) can
be obtained from F (1X) by including the limit points of F (1X). Now, applying the linear functionals
ηf to the limit points of F (1X), it is clear that under the weak∗ topology the collection of probability
measures corresponding to simple functions is dense in the space of probability measures over R(M). The
corresponding limit points are obtained from the weak∗ limits of functionals of simple functions

η(fn) −→ η(f∞)

The result follows by application of the Stone-Weierstrass theorem to the dual F (X ′)∗ given F (1′X)∗.
�

Following Tao (2010, p.14), the Reisz functional representation η(f) =
∫
fd(ηf ) defines a measure m such

that
∫

dηf =
∫
fdm and for any g,

∫
gηf =

∫
gfdm.

Proof of lemma 7.7b Recall that g({0}) = 1 implies that the subspace

E0 := {µ̂ : (M′ − λ0I)µ̂ = 0}

has dimension one. Any µ̂ such that M′µ̂ = µ̂ has the form µ̂ = cµ0 for non-zero c ∈ R/{0}. Hence
rank(µ0ι

′) = 1, and in this case, c ≡ 1 for every row of M. Moreover, dim Span(IS) = S. By the rank-
nullity theorem, the kernel of µ0ι

′ has dimension S − 1. Because µ0ι
′ ⊥ I − µ0ι′, the range of I − µ0ι′

coincides with the nullspace of µ0ι
′. Hence rank(I − µ0ι′) + rank(µ0ι

′) = S. In finite dimensions, all bases
are isometrically isomorphic, so if the rank of two operators are equal, their span is equivalent (up to
unitary maps). We conclude

{v : v =M′u , u ∈ RS} =
{
v = v0 + v1 : v0 = µ0ι

′u , v1 = (I − µ0ι′)u , u ∈ RS
}

Together, µ0ι
′, (I − µ0ι′) span the image of X under M′.

�

Definition: A σ - finite signed measure is a measure14 η : X → [−∞,∞] on a σ -field X such that for
some countable partition {Ej}j∈N with

∨
j Ej = X , η(X ) =

∑
j∈N η(Ej) with each ηj(Ej) <∞.

14A measure is a countably additive set function.
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Lemma 7.23 Every σ -finite signed measure η is the sum of two unsigned measures η = η+ + η− that are
mutually singular.15

Proof Hahn-Jordan decomposition theorem (Tao (2010) p.17 Theorem 1.2.2; p.19 E1.2.5)
�

Remark: The characteristic polynomial of M′ − I can be expressed

det(M′ − λI) = (λ− λ0)χ(0)
N0−1∏
j=1

(λ− λj)χ(j)

with the algebraic multiplicity χ(0) = 1. The characteristic polynomial can also be written

det(M′ − λI) =
(
λ− ι′M′µ0

)χ(0) N0−1∏
j=1

(
λ− v′jM′νj

)χ(j)
Hence for rank(M) > 1, the Perron-Frobenius theorem implies that for some λ1 < 1,

v′1M′ν1 = λ1

to ensure the additional singularity outside a neighborhood of λ0 = 1.

8 Appendix: Additional Charts and Tables

Table 8: Market and Value Decomposition by Latent Component (Unconditional)

Series term estimate statistic

Market (Intercept) −0.587∗∗∗ −7.588
Time Effect 1.273∗∗∗ 28.351
Component2 0.014 1.467
Component3 0.005 0.241

Value (HML) (Intercept) 0.206∗∗∗ 5.538
Time Effect 0.883∗∗∗ 32.476
Component2 0.024∗∗ 3.699

(a) Quarterly Fama -French 3-factor and Carhart model returns data are from 1967 Q1 to 2016 Q4 available
on Ken French’s website. Dividends, earnings and cay data are from Goyal and Welch 2008, available on
Amit Goyal’s website.

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

15A measure νa is singular with respect to νb if for some b ∈ σ(supp(νb)) such that νb(b) = 0, νa(b) > 0.
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Table 9: Momentum Return Predictability

(a) Predictability regressions are calculated over the entire sample. The predictor series ζ̂t is constructed
using data up to t for forecasts of returns at t+k or t+1+k, k ∈ {1, 2, 4, 8} on rolling windows of Tm =15yr
histories. The predictive regression is

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

where Gj(ζ̂t) is a functional of the spectral gap time series that can vary only by portfolio, indexed by
j. The rolling Tm samples are augmented with information contained in the forecast errors from forecasts
made at various lags. The variable ζ̂ is shorthand for the empirical estimate of the spectral gap. Tr1 is the
(non-normalized) largest contribution to the trace of the covariance matrix. Data are from Q1 1967 to Q3
2015 from Ken French, Goyal and Welch (2008) and CRSP.

Momentum (UMD)
Nominal Input horizon (quarters) predictor estimate. t : H0 = 0 R2 adj.R2

Lagged DP 1 ζ̂ -0.190 -1.570 0.013

ζ̂1+Tr1 -0.094 -1.569 0.013 0.008

2 ζ̂ -0.330 -1.939 0.019

ζ̂1+Tr1 -0.164 -1.944 0.020 0.014

4 ζ̂ -0.723 -2.977 0.045

ζ̂1+Tr1 -0.361 -3.001 0.046 0.041

8 ζ̂ -1.532 -4.748 0.112

ζ̂1+Tr1 -0.770 -4.817 0.115 0.110

12 ζ̂ -2.715 -7.117 0.230

ζ̂1+Tr1 -1.365 -7.239 0.236 0.231

Lagged DP 1 ζ̂ -0.255 -1.802 0.017

+ ζ̂1+Tr1 -0.113 -1.716 0.015 0.010

CRSP Hi-Lo 2 ζ̂ -0.426 -2.142 0.024

Cash Flow ζ̂1+Tr1 -0.193 -2.083 0.022 0.017

4 ζ̂ -0.921 -3.269 0.054

ζ̂1+Tr1 -0.421 -3.198 0.052 0.047

8 ζ̂ -1.922 -5.202 0.132

ζ̂1+Tr1 -0.886 -5.117 0.128 0.123

12 ζ̂ -3.390 -7.966 0.272

ζ̂1+Tr1 -1.561 -7.771 0.262 0.258

Lagged DP 1 Com.var -0.267 -1.511 0.012 0.007
2 Com.var -0.511 -2.063 0.022 0.017
4 Com.var -1.180 -3.358 0.057 0.052
8 Com.var -2.527 -5.498 0.145 0.140
12 Com.var -4.387 -8.368 0.292 0.288
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Figure 6: Predictability Term Structures
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(a) Profitability and Investment factors are not predictable by levels of the spectral gap. Forecasts are given
by the lagged spectral gap normalized to match the fit of realized factor returns on the rolling historical
Tm = 15 year samples. The spectral gap is calculated up to time t on a rolling 15 year history of returns
and used to forecast returns for various t+k, including returns between periods t+1 and various t+n+1.
The size of circular nodes corresponds to the absolute value of the test statistic against the null of zero (t
-statistics) of the time-series coefficient estimates obtained on the full sample. The Fama-French Market,
Value, Size, Profitability and Investment factors are quarterly from Q1 1967 to Q3 2015, compounded from
monthly factor returns from Ken French’s website.

Table 10: Nominal Forecast Inputs from CRSP Value Weighted Return ex-Dividend

Capital gains do not contain the same information in the nominal forecast errors as dividend yields.
Forecasting with capital gains for the value and momentum factors have negligible explanatory power.
Capital gains based forecasts have some power for the market, presented below. The variable ζ̂ is shorthand
for the empirical estimate of the spectral gap. Tr1 is the (non-normalized) largest contribution to the trace
of the covariance matrix.

Portfolio horizon
(quarters)

predictor estimate. t : H0 = 0 R2 adj.R2

Momentum 1 ζ̂1 1.349 1.848 0.017 0.012

(UMD) 2 ζ̂1 2.131 2.000 0.021 0.015

4 ζ̂1 4.981 3.339 0.057 0.051

8 ζ̂1 8.165 3.871 0.078 0.072

12 ζ̂1 11.724 4.330 0.099 0.094
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Figure 7: Time-Varying Expected Market and Value Latent Component Dynamics
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(a) Time variation in mean returns is represented by the time-series of conditional forecasts. One year
forecasts of the Market by the spectral gap. The spectral gap is the ratio of the first and second eigenfunc-
tions of the Markov operator with range equal to the span of observed returns. Dynamics of the leading
component in the decomposition of the market and value risk factors. Error bars are given on the series
weighted by the conditional exposure to the leading component. The conditional exposure is estimated on
a rolling Tm = 15 year window for consistency with the decomposition. Newey-West standard errors are
shown. Data are quarterly from 1967 Q1 to 2016 Q4. Fama French and Carhart factor model monthly
returns are from Ken French’s website. NBER recessions are in blue.
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Table 11: Momentum Return Predictability: Staggered Forecast Intervals

(a) Predictability regressions are calculated over the entire sample. The predictor series ζ̂t is constructed
using data up to t for forecasts of returns at t + k or t + 1 + k, k ∈ {1, 2, 4, 8} on rolling windows of
Tm =15yr histories.The variable ζ̂ is shorthand for the empirical estimate of the spectral gap. Tr1 is the
(non-normalized) largest contribution to the trace of the covariance matrix. The predictive regression is

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

where Gj(ζ̂t) is a functional of the spectral gap time series that can vary only by portfolio, indexed by
j. The rolling Tm samples are augmented with information contained in the forecast errors from forecasts
made at various lags. Data are from Q1 1967 to Q3 2015 from Ken French, Goyal and Welch (2008) and
CRSP.

Momentum (UMD)

horizon (quarters) predictor estimate. t : H0 = 0 R2 adj.R2

1 7→ 2 ζ̂1 -0.573 -1.741 0.016 0.010

1 7→ 2 ζ -0.458 -1.566 0.013 0.007
1 7→ 2 DP -11.199 -0.245 0.0003 -0.005
1 7→ 2 EP 25.985 1.340 0.009 0.004
1 7→ 2 cay -8.645 -0.397 0.001 -0.004

1 7→ 3 ζ̂1 -0.815 -1.762 0.016 0.011

1 7→ 3 ζ -0.794 -1.932 0.019 0.014
1 7→ 3 DP 20.669 0.321 0.001 -0.005
1 7→ 3 EP 52.926 1.952 0.019 0.014
1 7→ 3 cay -22.927 -0.732 0.003 -0.002

1 7→ 5 ζ̂1 -1.758 -2.718 0.038 0.033

1 7→ 5 ζ -1.736 -3.022 0.046 0.041
1 7→ 5 DP 63.123 0.693 0.003 -0.003
1 7→ 5 EP 86.587 2.269 0.026 0.021
1 7→ 5 cay -19.263 -0.426 0.001 -0.004

1 7→ 9 ζ̂1 -3.694 -4.491 0.099 0.094

1 7→ 9 ζ -3.415 -4.612 0.104 0.099
1 7→ 9 DP 220.372 1.857 0.018 0.013
1 7→ 9 EP 130.607 2.637 0.036 0.031
1 7→ 9 cay 38.784 0.641 0.002 -0.003
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Table 12: Market Return Predictability DP and CF − 10 Nominal Inputs

(a) The spectral gap is taken from the decomposition using returns of portfolios sorted on cash flows as
nominal inputs. The predictive regression is

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

where Gj(ζ̂t) is a functional of the spectral gap time series that can vary only by portfolio, indexed by
j. The rolling Tm samples are augmented with information contained in the forecast errors from forecasts
made at various lags. Predictability regressions are calculated over the entire sample. The variable ζ̂ is
shorthand for the empirical estimate of the spectral gap. Tr1 is the (non-normalized) largest contribution
to the trace of the covariance matrix. The predictor series ζ̂t is constructed using data up to t for forecasts
of returns at t + k or t + 1 + k, k ∈ {1, 2, 4, 8} on rolling windows of Tm =15yr histories. Data are from
Q1 1967 to Q3 2015 from Ken French, Goyal and Welch (2008). The nominal incputs are obtained from a
cross-section of stocks sorted into deciles by earnings to market cap and using the high-low portfolio return
as a nominal signal. Data are from CRSP.

Full Sample Estimates Out of Sample

h (quarters) predictor â1 t H0(0) R2 adj.R2

1 ζ̂ 0.851 2.630 0.035

ζ̂1+Tr1 0.388 2.460 0.031 0.025

2 ζ̂ 1.383 2.925 0.043

ζ̂1+Tr1 0.639 2.775 0.039 0.034

4 ζ̂ 2.728 4.125 0.084

ζ̂1+Tr1 1.267 3.947 0.077 0.072

8 ζ̂ 4.311 4.573 0.105

ζ̂1+Tr1 1.971 4.362 0.097 0.091

12 ζ̂ 6.054 5.051 0.131

ζ̂1+Tr1 2.721 4.806 0.120 0.114
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Table 13: Size Factor Predictability: Spectral Gap

(a) The predictor series ζ̂t is constructed using data up to t for forecasts of returns at t + k or t + 1 + k,
k ∈ {1, 2, 4, 8} on rolling windows of Tm =15yr histories. The variable ζ̂ is shorthand for the empirical
estimate of the spectral gap. Tr1 is the (non-normalized) largest contribution to the trace of the covariance
matrix. The predictive regression is

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

where Gj(ζ̂t) is a functional of the spectral gap time series that can vary only by portfolio, indexed by
j. The rolling Tm samples are augmented with information contained in the forecast errors from forecasts
made at various lags. Predictability regressions are calculated over the entire sample. Data are from Q1
1967 to Q3 2015 from Ken French, Goyal and Welch (2008) and CRSP.

Full Sample Estimates Out of Sample

h (quarters) predictor â1 t H0(0) R2 adj.R2

1 ζ̂ 0.455 2.587 0.034
Tr1 0.411 2.604 0.034

ζ̂1+Tr1 0.218 2.608 0.034 0.029

2 ζ̂ 0.849 3.508 0.061
Tr1 0.790 3.635 0.065

ζ̂1+Tr1 0.413 3.593 0.064 0.059

4 ζ̂ 1.862 5.439 0.137
Tr1 1.695 5.514 0.140

ζ̂1+Tr1 0.896 5.509 0.140 0.136

8 ζ̂ 3.706 7.535 0.242
Tr1 3.296 7.428 0.237

ζ̂1+Tr1 1.762 7.527 0.241 0.237

12 ζ̂ 5.206 8.048 0.276
Tr1 4.482 7.601 0.254

ζ̂1+Tr1 2.432 7.860 0.267 0.262
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